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Abstract — This work presents a methodology for reconstructing multiphase 

flow electrical capacitive tomography (ECT) images, using a particle swarm 

optimization (PSO) algorithm in the parallel processing paradigm. Intended 

is to improve the efficiency of the inverse problem algorithm in ECT, 

increasing the resolution of the reconstructed images, without necessarily 

increasing the processing time of these reconstruction technique. A 

limitation found is that, for inverse problem-type reconstruction techniques 

for ECT, the response of the sensor system is non-linear and, therefore, the 

processing time grows faster than any increase in resolution, imposing a 

high computational cost. For real-time applications, the first contribution is 

the removal of unnecessary processing from the usual code; the second is 

the creation of a new PSO algorithm for image reconstruction that is more 

efficient than normal. The new parallel processing routine present the 

physical principles of ECT, the heuristic algorithms used in the 

reconstruction process and the main concepts for parallel computing. 

I. INTRODUCTION 

Multiphase flows are often present in numerous 

industrial processes, particularly in food, chemical and 

petroleum industries and also in energy plants, among 

others (Thorn, Johansen and Hjertaker, 2013; Zainal-

Mokhtar and Mohamad-Saleh, 2013; Cui et al, 2014; Mei et 

al, 2016). In the majority of these studied flows the 

dielectric nature of matter dominates, and consequently, the 

use of electrical capacitance tomography (ECT) is 

reinforced as one of the most advantageous tomographic 

method to obtain images from such industrial processes. In 

comparison to other tomographic techniques, ECT offers 

some advantages, such as i) been non-radioactive, ii) non-

invasive and non-intrusive, iii) cost effective, iv) non 

susceptible to adverse temperature and pressure conditions 

and v) relative fast response. 

This technique is based on measurement of capacitance 

changes in dielectric distribution of the material present in 

the multiphase flow. Electrodes are placed around the flow 

pipe, usually 8 to 16, and the capacitance values across each 

pair are measured. Those capacitance measurements are 

then applied to an appropriate reconstruction algorithm 

which produces an image of the dielectric spatial 
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distribution and therefore the material across the sensor 

(Yang and Peng, 2003).  

The ECT sensor is composed by a number of electrodes 

that can be made of a cooper sheet placed around the flow 

pipe in a non-parallel way. Besides the capacitive sensor, 

there are also i) an electronic system of transduction to read 

a voltage signal which is proportional to the capacitance and 

between each pair of electrodes, and ii) a control and 

acquisition system that coordinates the multi-electrode 

measurements and converts the analog signal into the data 

to be used by the image reconstruction algorithm. 

 

II.  METHOD 

2.1 Forward and inverse problem of ECT 

Due to its specific features, ECT is considered as a soft-

field tomography. Therefore, the material to be imaged 

modifies the electric sensing field. Such effect is highly 

non-linear and the image reconstruction process becomes 

more complex in comparison to conventional x-ray 

tomography (Belo, 1999). 

Image reconstruction using ECT is a two steps task: 

firstly, the forward problem should be solved, in other 

words, it is the determination, using the excitation data, of 

the electric potentials inside the domain and the respective 

response along the contour. Secondly, the inverse problem 

should then be solved, which is the determination of the 

dielectric distribution into the domain from the relation 

between excitation data and the boundary response. 

Forward Problem Solution 

The solution of the forward problem associated with 

ECT can be defined as the determination of the electric 

potential, and thus the capacitance between the electrodes, 

associated to a given dielectric distribution over the area of 

a cross section of the pipe in study.  

If there are no free charges within the section of the 

imaged region, the relationship between the capacitance and 

permittivity distribution is modeled by Equation (1): 

�⃗� [ 𝑜 (𝑥, 𝑦)�⃗� 𝜑(𝑥, 𝑦)] = 0 (1) 

where (𝑥, 𝑦) ∈ 𝛺 represents the space domain, 0 is the 

vacuum absolute permittivity, (𝑥, 𝑦) is the relative 

permittivity distribution of the material inside the imaged 

region, 𝜑(𝑥, 𝑦) is the electric potential and 𝛤 is the closed 

curve enclosing the electrodes surrounding the region. 

The boundary conditions are defined when an electrode 

is excited with a potential 𝜑 = 𝑉0 (source electrode) and all 

others are kept on ground level (𝜑 = 0). The measuring 

process is then multiplexed for each grounded electrode 

(sensing electrode) in order to obtain the respective 

capacitance. Therefore, the potential distribution is 

expressed as  

𝜑(𝑥, 𝑦) = {
𝑉0, (𝑥, 𝑦) ∈ 𝛺𝑖

0, (𝑥, 𝑦) ∈ 𝛺𝑘, 𝑘 ≠ 𝑖
 (2) 

and for the capacitance we have 

𝐶 =
−𝜀0

𝑉𝑐
∫ (𝑥, 𝑦)�⃗� 𝜑(𝑥, 𝑦)𝑑𝛺
𝛤

 (3) 

As long as there is not a general analytic solution for 

all configurations of permittivity distribution and electrodes 

excitation conditions, only particular solutions can be 

achieved for specific configurations. For example, 

numerical routines using finite element method (FEM) have 

been developed to determine the capacitance values from 

the permittivity distribution and excitation profile of 

electrodes surrounding a pipe (Souza, 2009).  

FEM was chosen due to its versatility and robustness 

in dealing with complex geometries and inhomogeneous 

media and this is also the method implemented here to solve 

the forward problem.   

Inverse Problem Solution 

Solution of the inverse problem associated to ECT can 

be defined as the determination of the dielectric distribution 

over the area of a cross section of the pipe under analysis 

which is related to the capacitance values obtained by the 

sensor. 

One method of accomplishing this is to compare 

estimated values obtained from a numerical model with 

experimental measurements from a capacitance sensor. 

Thus, the traditional tomography problem is moved to the 

minimization of an error functional. Such functional should 

be able to reflect the discrepancies between the 

experimental measurements values and numerically 

calculated values corresponding to changes in permittivity 

distribution inside the region to be imaged. 

The optimization process consists in a search algorithm 

for the dielectric distribution that globally minimizes the 

error functional (Smolik, 2010). At initialization, the 

forward problem is solved for a given initial distribution 

which results in a numerical answer to the capacitance value 

that gives a new value to the error functional. If such value 

is smaller than the earlier value, then the former distribution 

is updated and this process will be iterated many times until 

a global minimum for the error functional is found. When 

the process ends the ultimate numerical result obtained 

should correspond to the distribution that most resembles to 

the actual permittivity distribution inside the sensor, in other 

words, an image of the sensor cross section is achieved. 

When choosing a reconstruction algorithm, the main 

considerations that we should take into account are 

computational effort, speed and accuracy. Iterative 
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algorithms can increase accuracy but, on the other hand, 

may slow the rebuilding process. Image reconstruction 

process using iterative approach is time consuming, because 

it has to estimate the capacitance value by solving the 

forward problem many times, in an iterated fashion, thus 

becoming a low-speed reconstruction technique, one that 

cannot be applied to systems that require real-time images. 

2.2 RECONSTRUCTION ALGORITHM 

Unlike direct algorithms, the iterative algorithms are 

formulated in terms of an optimization problem, 

characterized by iterated attempts to minimize an error 

function between the capacitance values obtained by the 

theoretical solution of the forward problem and 

experimental capacitance values obtained by the system 

sensor. It is assumed as the solution of the inverse problem, 

the dielectric configuration that can minimize the error 

functional (Li, 2015). 

Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a stochastic 

computational technique based on population dynamics. 

PSO has emerged from experiences developed by Kennedy 

and Eberhart (1995) with algorithms that model a social 

behavior from a set of individuals.  

Likewise, other collective intelligence approaches, PSO 

is based on the skills of a population of individuals which 

are able to interact with each other and also the 

environment. Relying on the capabilities of self-evaluation, 

comparison and imitation, individuals are able to deal with 

a number of possible situations presented by the 

environment and therefore, global behaviors emerge from 

these interactions. The algorithm developed by Kennedy 

and Ebehart (1995) seeks the optimization of a fitness 

function using information exchanges among individuals 

(particles) and the whole population (swarm). 

In order to achieve the optimal solution, each particle in 

PSO is treated as a point in Rn space and it represents a 

potential solution of the forward problem. Particle position 

is adjusted according to its own experience as well as group 

experience. Equation (4) corresponds to the sum of three 

distinct terms: the first one refers to the particle inertia; the 

second is a cognitive term related to particle individual 

learning of the best position it had already reached; the third 

is a social term that represents the experience exchange 

among all particles. In each iteration, the particle position is 

updated according to Equation (5) which considers its 

current position as well as a displacement given by the 

velocity due to iterating process. 

 𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖)+𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) (4) 

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 (5) 

Where vi is the particle i current velocity, w is an inertial 

weight that balances global and local exploration, c1 and c2 

are behavior coefficients, r1 and r2 are random numbers 

between 0 and 1, pbest is the best position already reached by 

the particle and gbest is the best position found by the swarm. 

Velocity update of particles depends on parameters that 

should be adjusted for each problem to be optimized, 

namely the inertial weight, cognitive and social terms. 

Inertial weight w allows broadness on the exploration space: 

high values improve global exploration. To the contrary, 

small values favor local exploration. In this work, the 

inertial weight has an update procedure (Equation 6) 

identical to what is described in Eberhart and Shi (2001), 

where w is adjusted linearly in the interval 0.4 to 0.9. Shi 

and Eberhart (1998) suggested to keep c1 = c2 = 2.0 in order 

to balance social and cognitive behavior of the particle. 

𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
(𝑘−1)

𝑚
 (6) 

Where k is the iteration number, m is the maximum 

iteration number, wmax and wmin are the maximum and 

minimum weight, respectively. The steps for implementing 

PSO algorithm are described in the Pseudocode 1 (Eberhart 

and Shi, 2001): 

Pseudocode 1. PSO algorithm 

 

 

Result: assume gbest as the problem solution; 

 

Parallel algorithm implementation of PSO can be 

described as a master-slave paradigm (Schutte et al, 2004). 

The master processor (MP) creates a set of random initial 

positions in the space Rn, partitions this set into subsets and 
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sends them to have its fitness function analyzed by the slave 

processors (SPs). All decision processes are carried out by 

the MP, for instance, position and velocity update as well as 

the algorithm convergence control. SPs solve the forward 

problem and compare their results to the capacitance values 

obtained experimentally. Thus, for each position 

configuration the fitness function is evaluated and the 

resulting value is returned to the MP. MP and SPs tasks are 

described in Pseudocode 2.  

Pseudocode 2. Parallel PSO algorithm 

 

Result: Assume gbest  as the problem solution; 

  

 The initial steps of serial and parallel PSO algorithms 

are the same. Once the initialization step has been carried 

out by the MP, a package of m particles is sent to the SPs 

where the fitness function for each particle is evaluated. 

 Information exchange between MP and SPs is 

implemented using Message Passing Interface (MPI), a 

peer-to-peer communication library, as described in Singh 

(2012). 

Parallel algorithm application aims to reduce processing 

time span from capacitance measurements (from sensor) to 

image reconstruction in comparison to serial algorithm. 

Such reduction is attained by the distribution of forward 

problem solving to many processors. 

2.3 EVALUATION OF ALGORITHMS BY 

SIMULATION 

Algorithm process 

To analyze the spatial resolution obtained by the PSO 

algorithm applied to the ECT, we numerically simulated the 

response of a capacitive sensor with eight electrodes, with 3 

different distributions of a two-phase mixture (oil-water): A 

core flow distribution, a homogeneous distribution of oil 

water containing bubbles and finally a stratified 

distribution. 

Capacitance values were obtained from the direct 

problem solution for simulated values of permittivity, where 

they were contaminated with numerical noise in order to 

observe the impact of experimental error in the quality of 

the reconstructed image. The relative permittivity of the 

materials was admitted to be 4.1, 3.0 and 80.0, respectively 

for the acrylic pipe, oil and water contained within the pipe. 

During the process of image reconstruction, a structured 

mesh was used, subdividing the region under study in two 

subregions – inner portion and pipe wall as can be seen in 

Figure 1a) and 1b). In order to avoid the “inverse crime” 

described in Wirgin (2004), we used a more refined mesh to 

compute the simulated capacitance values and a less refined 

mesh for the solution of the inverse problem. 

 

Fig.1. Discretization domain with (a) 128 elements and (b) 

32 elements inside the pipe. 

 

For the execution of the numerical routines, it was used 

a computer with an Intel® CoreTM i7–4790, 16 GB of RAM, 

running Ubuntu operational system and GNU/Linux 64 bits 

kernel 15.10. 

A cluster was assembled using a set of virtual machines 

on VirtualBox 4.1.8 running OpenMP protocol library. 

The processing algorithm was coded in Fortran 90 

language, using the GNU Fortran compiler. For pre- and 

post-processing, routines developed in Scilab language 

have been implemented. 
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Evaluation criteria 

Two quality assessment methods were employed to 

evaluate the obtained images: qualitative and quantitative. 

The qualitative assessment involves visual comparisons of 

similarity for different reconstruction methods. 

Reconstructed images obtained from the pipe section are 

also compared quantitatively using the following 

estimators: 

a) Normalized mean square error (NMSE):  

∆ =
∑ (𝜀𝑖

ref−𝜀𝑖
𝑟𝑒𝑐)

2
𝑁
𝑖=1

∑ (𝜀𝑖
ref−𝜀𝑖

𝑟𝑒𝑐
)
2𝑁

𝑖=1

 (7) 

b) Normalized absolute error – NAE:  

𝛿 =
∑ |𝜀𝑖

𝑟𝑒𝑓
−𝜀𝑖

𝑟𝑒𝑐|𝑁
𝑖=1

∑ |𝜀𝑖
𝑟𝑒𝑓

|𝑁
𝑖=1

 (8) 

c) Correlation coefficient – Rxy:  

𝑅𝑥𝑦 =
∑ (𝜀𝑖

𝑟𝑒𝑐−�̄�𝑟𝑒𝑐)(𝜀𝑖
ref−�̄�ref)𝑁

𝑖=1

[(∑ (𝜀𝑖
𝑟𝑒𝑐−�̄�𝑟𝑒𝑐)

2𝑁
𝑖=1 )(∑ (𝜀𝑖

ref−�̄�ref)
2𝑁

𝑖=1 )]

1
2

 (9) 

Where 𝑖
ref and 𝑖

𝑟𝑒𝑐 are respectively the permittivity 

value of the element i for the reference dielectric 

distribution and reconstruted dielectric distribution by LBP 

algorithm and PSO, and ¯ref and ¯rec are their average 

values, respectively. 

The best algorithm is the one with small values of 𝛿  

and ∆ , and values of Rxy close to unity. The normalized 

quadratic error is sensitive to large errors of some elements, 

while the normalized absolute error is sensitive to small 

errors on many factors, where the correlation coefficient 

indicates the spatial similarity between the reference image 

and the reconstructed image. 

 

III.  RESULTS  

Images of the simulated flows profiles are shown on 

Figure 2. Those images should be compared with Figures 3, 

4 and 5 for the qualitative evaluation of the results. 

Numerical noise of 3% and 5% were also added to the 

capacitance values in order to test the robustness of 

reconstruction algorithms. 

In order to compare the quality of images obtained by 

the PSO algorithm, we employed linear back projection 

(LBP) algorithm as reference for the simulated flows shown 

on Figure 2. Based on the sensitivity matrix model, LBP is 

still the most cited reconstruction method and in its simplest 

implementation it presumes that the sensitivity matrix is 

invariant within the studied area (Li, 2015). All images were 

accomplished using a 5000 particles swarm and 500 

iterations. 

Numerical evaluation for the chosen estimators is listed 

on Tables 1, 2 and 3 for capacitance values without 

numerical noise, 3% and 5% of noise, respectively.  

 

Fig.2. Dielectric simulated flow profiles: (a) core flow, (b) 

bubbles and (c) stratified. 

 

Table 1. Error values ε related to the image reconstruction 

process without numerical noise. 

Flow 

Pattern 

Metho

d 

NMSE 

(%) 

NAE 

(%) 
Rxy 

CORE 

LBP 57.90

1 

56.97

1 

92.96

7 

PSO 0.137 0.112 99.99

9 

BUBBLE 

LBP 103.5

10 

125.6

70 

22.89

0 

PSO 0.010 0.010 100.0

00 

STRATIF

IED 

LBP 51.75

8 

32.23

0 

85.89

1 

PSO 2.842 1.883 99.96

1 

 

Table 2. Error values ε related to the image reconstruction 

process with numerical noise of 3%. 

Flow 

Pattern 

Metho

d 

NMSE 

(%) 

NAE 

(%) 
Rxy 

CORE 
LBP 59.134 58.560 91.836 

PSO 9.831 4.472 99.548 

BUBBLE 
LBP 102.462 123.595 22.653 

PSO 36.812 24.552 93.523 

STRATIFI

ED 

LBP 51.189 31.665 86.197 

PSO 6.281 3.400 99.815 
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Table 3. Error values ε related to the image reconstruction 

process with numerical noise of 5%. 

Flow 

Pattern 

Metho

d 

NMSE 

(%) 

NAE 

(%) 
Rxy 

CORE 
LBP 62.440 64.772 90.778 

PSO 18.389 7.613 98.400 

BUBBLE 
LBP 102.998 122.218 21.327 

PSO 55.840 37.547 85.370 

STRATIFI

ED 

LBP 52.236 33.208 85.652 

PSO 9.856 5.542 99.547 

 

 

LBP 

 

PSO 

Figure 3. Reconstructed images from simulated values 

without numerical noise. 

 

 

LBP 

 

PSO 

Figure 4. Reconstructed images from simulated values 

without numerical noise of 3%. 

 

 

LBP 

 

PSO 

Fig.5. Reconstructed images from simulated values 

without numerical noise of 5%. 

 

IV.  DISCUSSION 

PSO technique applied to ECT imaging has compelling 

results concerning its potentiality. Even in the presence of 

noise, it is possible to observe, not only visually but also by 

the quality indicators above, a good agreement between the 

proposed permittivity models and the accomplished results 

for the distinct flow patterns tested. 

 

V. CONCLUSION 

However, one of the main limitations of PSO technique 

is reached when the complexity of the optimization 

functional increases in conjunction with the amount of 

image pixels and, therefore, the number of parameters to be 

determined. This situation limits the maximum image 

resolution that can be achieved in real time applications. A 

possible solution is to grow the swarm size, which facilitates 

the determination of an optimal solution, but such approach 

is time consuming when a single processing unit is 

employed. 
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