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Abstract— Multiple Instance Learning (MIL) is commonly utilized in 

weakly supervised whole slide image (WSI) classification. MIL 

techniques typically involve a feature embedding step using a 

pretrained feature extractor, then an aggregator that aggregates the 

embedded instances into predictions. Current efforts aim to enhance 

these sections by refining feature embeddings through self-supervised 

pretraining and modeling correlations between instances. In this paper, 

we propose a convolutional sparsely coded MIL (CSCMIL) that utilizes 

convolutional sparse dictionary learning to simultaneously address 

these two aspects. Sparse dictionary learning consists of filters or 

kernels that are applied with convolutional operations and utilizes an 

overly comprehensive dictionary to represent instances as sparse linear 

combinations of atoms, thereby capturing their similarities. 

Straightforwardly built into existing MIL frameworks, the suggested 

CSC module has an affordable computation cost. Experiments on 

various datasets showed that the suggested CSC module improved 

performance by 3.85% in AUC and 4.50% in accuracy, equivalent to 

the SimCLR pretraining (4.21% and 4.98%) significantly of current 

MIL approaches. 

 

I. INTRODUCTION 

The utilization of gigapixel resolution in digital whole 

slide imaging (WSIs) facilitates the comprehensive 

examination and analysis of the complete tissue sample 

within a singular image. Nevertheless, pathologists 

encounter substantial difficulties due to the magnitude and 

intricacy of the images [1]. Consequently, there is a growing 

need for automated workflows to facilitate WSI analysis. 

Because of this, deep learning-based methods have been 

increasingly used and developed in this sector 

[2,3,4,5,6,7,8,9]. The massive size of WSIs and the lack of 

annotations at the pixel level make deep learning 

approaches difficult to deploy [2]. To tackle these issues, 

approaches based on weakly-supervised multiple instance 

learning (MIL) have been suggested [6,7,8,9]. 

In the framework of MIL for WSI classification, each 

WSI is seen as a collection of non-overlapping patches that 

are extracted from the WSI slide. Each patch is considered 

as an unlabeled instance. The bag is classified as positive if 

at least one of the occurrences demonstrates the presence of 

disease, and negative otherwise. A commonly employed 

methodology for conducting MIL in WSIs involves a two-

step process. Initially, the cropped patches undergo a 

process of conversion into feature embeddings by means of 

a fixed feature extractor. A fixed extractor is more desirable 

than a learned one since the computational cost of back-

propagating with a large number of instances in a bag is 

prohibitively expensive. Next, a MIL aggregator is utilized 

to merge the embeddings of local instance features in order 

to get bag-level predictions. The potential sub-optimality of 

a two-stage learning scheme arises from the presence of 

noisy feature embeddings and imbalanced instances. 
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Specifically, the limited representation of positive instances 

within a positive bag can lead to the MIL aggregator 

learning an inaccurate mapping between embeddings and 

labels. Additionally, the limited supervisory signal poses a 

hindrance to the MIL aggregator’s ability to capture 

correlations among instances [7, 8, 10]. 

Prior endeavors at MIL addressed these two obstacles 

individually. The initial category of approaches centered on 

enhancing the feature embeddings that were extracted 

through the use of self-supervised pretraining [7,10,11,12]. 

On the other hand, these techniques necessitate a large 

amount of data and an additional computationally intensive 

training phase. In order to eliminate negative instances, the 

second group of approaches concentrated on enhancing the 

MIL aggregator to better capture cross-instance correlations 

and imposing sparsity limitations on the local instance 

attention (e.g., picking k most significant instances) [13,14]. 

Better sparse instance feature embeddings that can model 

the invariance of the same type of biological tissues would 

also ease the duty of the MIL aggregator, therefore there is 

a strong relationship between these two types of 

approaches. Sparse feature embeddings, which are a low-

dimensional version of the feature extractor’s initial 

instance embeddings, are also advantageous to WSI 

representation since the high-dimensional WSI 

representation is located on a low-dimensional manifold, 

according to empirical evidence [10, 12]. 

Convolutional Sparse Coding (CSC) applies sparse 

representations to image or signal data and exploits local 

dependencies through convolutional processes. In signal 

processing and machine learning, sparse coding finds a 

sparse basis function representation of incoming data. We 

built an end-to-end learning-optimizable CSC module for 

convolutional sparse coding learning. Our new MIL 

framework, convolutional sparsely coded MIL (CSC-MIL), 

uses convolutional dictionary learning to improve initial 

feature embeddings. Traditional sparse dictionary learning 

algorithms are incompatible with deep neural networks and 

need considerable hyperparameter adjustment. Since it is 

complementary to current MIL frameworks, the proposed 

CSC module can be incorporated with them with reasonable 

extra processing. The experimental findings on different 

datasets and tasks proved that the suggested strategy helped 

state-of-the-art MIL methods perform better. 

 

II. RELATED WORK 

Methods for MIL can be broadly classified into two 

primary categories: instance-level MIL and bag-level MIL. 

In general, the instance-level approaches [15,16,17,18,19] 

include training a neural network to predict instance-level 

labels. These labels are assigned by propagating the bag-

level label to each instance. The researchers combine the 

anticipated labels at the instance level in order to get the 

appropriate label at the bag level. However, as a 

consequence of the limited number of positive examples in 

a bag that are linked to a disease in whole slide images 

(WSIs), the negative cases within a positive bag are 

frequently incorrectly labeled. Despite multiple endeavors 

to refine the instance-level labels, empirical investigations 

have repeatedly demonstrated that instance-level 

approaches provide lower performance in comparison to 

their bag-level counterparts [8,20]. 

The bag-level multiple instance learning (MIL) 

approaches [6,7,8,9,20,13,21,22,23,14,12] employ a two-

stage learning process. In this process, the methods initially 

transform the instances into a feature representation by 

utilizing a pretrained feature extractor. Subsequently, they 

employ MIL aggregation techniques to generate predictions 

at the bag-level. Previous investigations on bag-level MIL 

have predominantly concentrated on two main avenues. 

One potential option for improvement involves enhancing 

the MIL aggregator. The attention-based MIL [7,6] 

transformed non-parametric poolings like max/mean-

pooling [20] into trainable ones using an attention 

mechanism. However, initial approaches examined each 

incident separately without considering similarities. Further 

research has addressed this restriction by using graph 

convolutional networks [14], non-local attention [7], 

transformers [8], and knowledge distillation [9]. The second 

approach involves enhancing feature embedding through 

self-supervised pretraining [7,10,11,12]. However, these 

approaches require ample data for task-specific training and 

are computationally costly. 

The concept of employing sparse coding in network 

designs can be attributed to the research conducted by [24] 

who explored the application of unrolling sparse coding 

algorithms, such as ISTA, to acquire knowledge about the 

sparsifying dictionary. Several recent studies have 

investigated the utilization of deep networks using 

convolutional sparse coding layers for various tasks such as 

image denoising, picture restoration, and image 

classification with network normalization [25,26,27,28]. 

The efficacy of neural networks has primarily been 

established on datasets of limited or moderate sizes, 

particularly in the context of tasks such as picture 

categorization or production. In a recent study by [29], it 

was shown that convolutional sparse coding-inspired 

networks have achieved notable performance in image 

classification tasks using extensive picture datasets like 

ImageNet-1K. 

Our work is similar to [10], which improved feature 

embedding using low-rank guided self-supervised pre-

training and an attention-based MIL aggregator that utilizes 
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low-rank properties. However, it requires further self-

supervised training and is customized for a certain MIL 

aggregator. Our approach may increase features and 

represent global instance similarities using a single module, 

making it easy to integrate into current MIL methods. 

 

III. METHODOLOGY  

To maintain the integrity of our analysis, we will focus on 

the specific case of bag-level binary MIL classification. The 

investigation aims to discover a correspondence between a 

collection of bags x1, x2, · · · , xb, and their respective labels 

z1, z2, · · · , zb, with xi,j is a positive integer greater than or 

equal to n instances (xi,1, xi,2, · · · , xi,n) and ℝ𝑝  is the 

dimension of each instance (xi,1). The mathematical 

definition of the bag-level binary MIL classification is as 

follows: 

 

 

where yi,j ∈< {0,1} represents the instance-level label of the 

i-th bag that is unknown, and n may differ between bags. A 

bag-level prediction is generated when a MIL aggregator 

aggregates the instance-level predictions contained within a 

bag.  

 

The function fcls(·) represents a classifier at the bag level. 

The symbol 𝜙𝜔  represents an embedding network that is 

parameterized by ω and operates at the instance level. The 

function σ is a permutation-invariant function. In this study, 

we examine four commonly used MIL pooling techniques, 

namely attention-based [6], non-local-based [7], 

transformer-based [8], and knowledge distillation-based 

[9]. 

3.1 SPARSELY CODED IN MIL 

Empirical evidence supports the notion that the low-

dimensional representation of instance embeddings 

significantly enhances the WSI representation [10, 12]. We 

assume the initial instance embeddings 𝜙𝜔(𝑥𝑖)  can be 

represented in a low-dimensional space by a linear 

combination of s << m atoms from an over-complete 

dictionary D ∈ ℝpxm, where m is the number of atoms in 

the dictionary. A classic Sparse Coding (SC) method for 

signals is to divide them into patches and solve for each 

 

 

3.2 CONVOLUTIONAL SPARSE CODING 

The CSC model is derived from the classical SC model by 

exchanging the matrix with the convolutional operator. 

 

Where x ϵ ℝn1xn2 is the input signal, di ϵ ℝkxk a local 

convolution filter, and zi ϵ ℝn1xn2  a sparse feature map of 

the convolutional atom 𝑑𝑖 the 𝑙1 minimization problem for 

CSC formulated as 

 

 

 

The CSC includes the entire input signal, unlike typical 

SC, which splits x into patches or segments. A learned atom 

of a certain edge orientation can globally represent all edges 

of that orientation in the image since the CSC model is 

spatially invariant. 

Since convolutions are linear and the CSC model is a 

classical SC model, where Dconv is a concatenation of 

Toepltiz matrices, it can be interpreted to be a variant of 

classical SC. To format the aim in eq 5 replace the universal 

dictionary D with Dconv . Representing the CSC model as 

matrix multiplication is inefficient in memory and 

computation. Each element of x requires n1xn2xm multiply 

and accumulate operations compared to convolution 

formation, which only requires s MACs (assuming s << n1, 

n2). ISTA iterations for CSC reads as: 

 

 

where d ∈ Rs×s×m is an array of m s × s filters, d ∗ z = [flip(d0) 

∗ x, · · · , flip(dm−1) ∗ x] and d ∗ z =  ∑ di ∗ zi
m−1
i=0  . The 

flip(di) operation flips the order of entries in di in both 

dimensions. 

 

the variables we, wd, and θ are fully trainable and 

independent. We proposed the variable c to allow for 

numerous channels in the initial signal, such as color 

channels. 

3.3 LEARNING THE OPTIMAL λ 

The selection of the sparsity regularization strength λ is 

a crucial parameter in the ISTA with Acceleration. Tuning 

the value of λ is crucial for balancing sparsity and 

expressiveness in Convolutional Sparse Coding (CSC). 

However, within the framework of NA-MIL, the selection 

of the ideal λ value may differ between bags, posing a 

significant challenge for manual tuning. To achieve this 

objective, we framed the assessment of the optimal λi for 

each bag as a regression task. The parameter λi was 

represented as a feed-forward network (FFN) fθ (ϕω (xi)). 

Here, θ represents the parameters of the network. The FFN 

in this study was composed of three fully-connected layers, 

and ReLU activation was performed on each layer. A mean 

pooling layer was incorporated following the fully 

connected feedforward neural network (FFN) to generate a 

(7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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single numerical output for λi. The average pooling method 

was selected because the sparsity is similarly distributed 

across all target instance embeddings in a bag. 

3.4 LEARNING THE OPTIMAL STEP SIZE 

The choice of the step size has a crucial role in 

determining the convergence behavior of the ISTA with 

Acceleration (ISTA-ACC) algorithm. One common 

approach for learning the step size is line search, where the 

step size is determined dynamically at each iteration based 

 on the properties of the objective function. Instead of 

utilizing a predetermined step size (α), it is suggested to  

Table. 1: Performance comparison on two classical MIL 

benchmark datasets 

 

employ a line search technique to choose the most favorable 

step size throughout each iteration. At every iteration k, 

conduct a line search in the direction of the negative 

gradient in order to get the optimal step size that minimizes 

the objective function. Two commonly used line search 

approaches in optimization algorithms are backtracking line 

search and quadratic interpolation. 

 

IV. EXPERIMENTS 

4.1 DATASETS 

A series of tests were done on many datasets, 

encompassing two well-established MIL benchmarks, 

namely the MNIST-bags dataset [6], the CAMELYON16 

dataset [30], and the Cancer Genome Atlas non-small cell 

lung cancer (TCGA-NSCLC) dataset. These experiments 

were carried out to assess and verify the efficacy of the 

proposed method. 

Classical MIL benchmark datasets are MUSK1 and 

MUSK2. The MUSK1 and MUSK2 datasets estimate 

pharmacological effects based on molecular configurations. 

Each bag has several molecular conformations. The bag 

label is positive if at least one conformation has the intended 

pharmacological effect, and negative if none is effective 

[31]. 

The MNIST-bags dataset [6] contains random bags of 

grayscale handwritten digits from the MNIST dataset. As 

per [6], the digit of interest was ’9’, and any bag with at least 

one instance of it was considered affirmative. Ten 

incidences per bag were averaged, with a standard deviation 

of two. After adding the proposed SC module into attention-

based MIL, we used this dataset for explanations. 

The public WSI dataset CAMELYON16 detects 

metastatic breast cancer in lymph node tissue. The dataset 

contains 399 lymph node tissue WSIs (one corrupted 

sample was deleted), split into 270 training samples and 129 

testing samples. Pathologists annotate each WSI with a 

binary label indicating metastatic cancer presence or 

absence in the lymph node tissue. Cancerous tissue areasof 

each WSI are also annotated in the dataset. After following 

the preprocessing steps in [7], we trimmed the WSIs into 

224 × 224 non-overlapping patches. Approximately 3.37 

million patches at ×20 magnification were produced, 

averaging 8451 per bag. The TCAGA-NSCLC dataset is 

utilized for the purpose of distinguishing between two sub-

types of lung cancer, namely lung squamous cell carcinoma 

and lung adenocarcinoma. Following [7], we separated 

1037 diagnostic WSIs into 744 training, 83 validation, and 

210 testing sets. Following the same  

 

 

 

 

 

 

Method Musk1 Musk2 

mi-Net 0.886 ± 0.003 0.857 ± 0.002 

MI-Net 0.887 ± 0.015 0.859 ± 0.012 

Mi-Net with DS 0.894 ± 0.003 0.084 ± 0.002 

Mi-Net with RC 0.967 ± 0.003 0.960 ± 0.002 

ABMIL 0.892 ± 0.015 0.858 ± 0.012 

ABMIL-Gated 0.900 ± 0.015 0.863 ± 0.012 

GNN-MIL 0.917 ± 0.003 0.892 ± 0.002 

DP-MINN 0.907 ± 0.003 0.926 ± 0.002 

NLMIL 0.921 ± 0.003 0.910 ± 0.002 

ANLMIL 0.912 ± 0.015 0.884 ± 0.012 

DSMIL 0.932 ± 0.003 0.930 ± 0.002 

ABMIL w/CSC 0.957 ± 0.015 0.957 ± 0.008 

ABMIL-Gated 

w/CSC 

0.969 ± 0.003 0.961 ± 0.002 
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Table.2: Evaluation of state-of-the-art approaches on CAMELYON16 and TCGA-NSCLC datasets. AUC and classification 

accuracy (%) were reported. 

 

preprocessing as the CAMELYON16 dataset, about 

10.30 million patches were retrieved at ×20 magnification. 

Each bag averaged 10355 patches. 

4.2 BASELINES 

We compared the proposed method against deep 

learning-based MIL methods, such as mi-Net and MI-Net 

[20], ABMIL and ABMIL-Gated [6], GNN-MIL [32], DP-

MINN [33], and three non-local MIL pooling methods 

(NLMIL [34], ANLMIL [22], and DSMIL) on classical 

MIL benchmark datasets. For WSI classification, we 

investigated integrating the CSC module into four MIL  

 

 

 

aggregators: ABMIL with gated attention [6], DSMIL 

[7], TransMIL [8], and DTFD-MIL with MaxS[9]. 

4.3 EXPERIMENTAL SETTINGS 

In this study, different experimental approaches were 

used for different datasets. We ran 10-fold cross-validation 

on conventional MIL datasets with five repetitions each 

experiment, focusing on classification accuracy. We tested 

the effectiveness of the suggested strategy by integrating the 

CSC module into the ABMIL framework utilizing two 

attention mechanisms: ABMIL w/ SC and ABMIL-Gated  

 

 

ResNet-18 ImageNet 

Pretrained 

Method Camelyon16 TCGA-NSCLC 

 Accuracy AUC Accuracy AUC 

ABMIL-

Gated 

 80.55 80.40 81.72 91.22 

+CSC 82.16 83.41 84.50 94.28 

∆ +1.55 +4.13 +2.78 +2.06 

DSMIL  82.82 85.76 77.67 89.15 

+CSC 84.37 86.73 86.23 92.26 

∆ +1.55 +0.97 +8.56 +3.11 

TransMIL  80.82 81.76 84.67 92.15 

+CSC 82.37 86.73 90.23 94.26 

∆ +1.55 +4.97 +5.56 +2.11 

DTFD(maxS

) 

 82.95 89.54 84.29 90.37 

+CSC 86.05 92.55 87.57 94.20 

∆ +3.10 +3.01 +3.34 +3.83 

ResNet-18 SimCLR 

Pretrained 

ABMIL-

Gated 

 82.05 82.05  85.72 90.22 

+CSC 85.16 86.41 88.50 93.28 

∆ +3.11 +0.34 +2.78 +3.06 

DSMIL  86.82 85.76 86.67 93.15 

+CSC 88.37 87.73 90.23 95.26 

∆ +3.11 +1.97 +3.56 +1.76 

TransMIL  86.82 85.76 86.67 93.15 

+CSC 88.37 87.73 90.23 95.26 

∆ +3.11 +1.97 +3.56 +1.76 

DTFD(maxS

) 

 82.95 89.54 84.29 90.37 

+CSC 86.05 92.55 87.57 94.20 

∆ +3.10 +3.01 +3.34 +3.83 
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Table.3: Proposed CSC module parameter selections 

the number of atoms in dictionary when L = 6 

 

w/ CSC. Additionally, 200 bags were used for training 

and 50 for testing in the MNIST-bags dataset. We used the 

training and testing partitions for the two WSI datasets. We 

tested features from two pretrained ResNet-18 models. 

Evaluation metrics included classification accuracy and 

AUC values. 

This work trained all models using cross-entropy loss. 

All results in tables 1 and 2 had m = 16 atoms in a dictionary 

and L = 6 layers. The batch size was 1 for all tests. Models 

were trained on conventional MIL datasetsusing an Adam 

optimizer for 40 epochs, with initial learning of 1 × 10−4 and 

l2 weight decay of 5 × 10−4. The initial learning rate was 

changed using a cosine annealing scheduler. We used the 

identical training settings on the MNIST-bags dataset but 

with a 5x10-4 initial learning rate and 1 × 10−4 weight decay. 

For the WSI classification tasks, we trained all four MIL 

aggregators for 200 epochs using default settings. 

4.4 RESULTS 

After integrating the proposed CSC module, ABMIL 

w/CSC and ABMIL-Gated w/CSC exceeded state-of-the-

art classification accuracy approaches on all five MIL 

benchmark datasets (1). The ABMIL-Gated w/CSC 

outperformed the previous state-of-the-art accuracy by 

2.5%, with 3.7% on MUSK1, 3.7% on MUSK2, and 3.1% 

on MUSK2. Furthermore, the accuracy of the ABMIL-

Gated w/SC demonstrated the greatest stability, as 

evidenced by its average standard deviation of 0.0054. 

 

Fig.1: Comparison of attention weight on positive bags on 

MNIST-bags ABMIL w/o CSC module and ABMIL w/ CSC 

module 

 

The integration of the suggested CSC module 

consistently enhanced the performance of the four various 

types of MIL aggregators when combined with two distinct 

pre-training approaches, as shown in 2. This proves that the 

suggested CSC module’s performance improvement is 

independent of the MIL aggregators and pre-training 

techniques used. Incorporating the suggested  

CSC module into the CAMELYON16 dataset led to an 

average AUC improvement of 4.01% when using ImageNet 

pre-training and 2.60% when using SimCLR  

Table.4: Proposed CSC module parameter selections the 

number of layer when atoms m = 16 

 

pre-training. Applying the CSC module to two separate pre-

trained feature embeddings also resulted in an average 

accuracy gain of 2.37% and 3.63%, respectively. We found 

that utilizing ImageNet pre-training increased AUC on the 

TCGA-NSCLC dataset by an average of 3.69%, whereas 

using SimCLR pre-training increased AUC by 2.28%. An 

accuracy enhancement of 4.01% and 6.63%, respectively, 

was observed when features derived from the two ResNet-

18 models that were pre-trained differently were utilized. In 

addition, our results revealed that the enhancement in 

ImageNet pre-training (with an average AUC of 3.85% and 

an accuracy of 4.50%) was more substantial than that of 

SimCLR pre-training (with an AUC of 2.44% and an 

accuracy of 3.82%). This implies that the task of improving 

high-quality feature embedding, such as SimCLR pre-

training, is more difficult compared to developing a low-

quality feature embedding, such as ImageNet pre-training. 

Additionally, it is usually observed that superior feature 

embedding results in improved performance. Importantly, 

the suggested CSC module improved performance by 

3.85% in AUC and 4.50% in accuracy, equivalent to the 

SimCLR pretraining (4.21% and 4.98%). However, in 

contrast to self-supervised pre-training, the proposed CSC 

module can be seamlessly integrated into existing MIL 

frameworks without requiring an additional training phase. 

 

 

 

# Atoms(m) # Params FLOPS AUC 

m=4 59.53K 10.25K 86.61 

m=8 94.03K 18.43K 88.31 

m=16 189.13K 86.13K 90.45 

m=32 561.65K 888.60K 90.75 

#Layers (L) FLOPS AUC 

L=2 59.53K 90.61 

L=4 70.03K 91.31 

L=6 86.13K 92.10 

L=8 102.22K 91.27 
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Fig. 2: The tumor localization in CAMELYON16 using the SimCLR pre-trained features: (a) map form ABMIL

-Gated w/o CSC and (b) map form ABMIL-Gated w CSC 

 

4.5 ABLATION STUDY 

To examine the influence of hyperparameter selection 

(specifically, the number of layers L and the number of 

atoms in the dictionary m) on the performance of the CSC 

module, a sequence of ablation experiments were 

conducted. Using SimCLR pre-trained features on 

CAMELYON16, ABMIL-Gated performed ablation 

investigations. To investigate the influence of the quantity 

of atoms, we kept the number of layers constant at 6. 

Increasing the number of atoms resulted in a progressive 

performance improvement, as well as an increase in 

parameters and calculation (Table 3). We found that 

increasing the number of atoms from 16 to 32 improved 

performance by 0.32% in AUC but increased computation 

by tenfold. We fixed the number of atoms at 16 to test how 

layer count affected performance. Increasing the number of 

layers gradually made the AUC better, but it took more time 

to do the calculations (Table 4). A decrease in value was 

noted as L was raised from 2 to 4, potentially attributable to 

slight variations in the convergence trajectory of ISTA-

ACC. 

4.6 INTERPRETABILITY 

In addition to enhancing the performance of numerous 

MIL aggregators, the proposed CSC module also improved 

their interpretability. The vanilla Attention-Based Multiple 

Instance Learning (ABMIL) model demonstrated an 

imbalanced distribution of attention scores (mean: 0.1780, 

standard deviation: 0.0748) when applied to the MNIST-

bags dataset, specifically for the target digit ’9’. (Fig. 1) 

This unequal distribution can be attributed to the model’s 

lack of understanding regarding the relationships between 

instances within the dataset. Following the integration of the 

suggested CSC module, the attention scores for the ABMIL 

with CSC became more uniformly distributed (0.1995 ± 

0.0341) (Fig. 1). Similar results were noted in the 

identification of the structure’s location inside the 

designated area of interest in whole slide images (WSIs). 

The utilization of attention scores allowed for the 

assessment of the importance of each patch, hence offering 

valuable insights into critical morphological features that 

can inform clinical diagnosis. The vanilla ABMIL-Gated 

model had inadequate tumor localization performance on 

the CAMELYON16 dataset, as illustrated in Fig. 2, where 

it failed to accurately identify the majority of tumor patches. 

Nevertheless, the incorporation of the CSC module 

greatly improved the localization accuracy of the ABMIL-

Gated model, as depicted in Fig. 2, demonstrating a strong 

alignment with the annotated tumor shape. The results 

obtained from analyzing both the MNIST-bags dataset and 

the WSI dataset demonstrate that the proposed CSC 

module’s coding of instance embeddings is capable of 

effectively capturing cross-instance similarities. This, in 

turn, results in improved localization performance. 

 

V. CONCLUSION 

Using Convolutional Sparse Coding learning, we 

presented a new MIL framework in this paper called 

CSCMIL. The method being suggested aims to improve 

both the embedding of instance features and the modeling 

of cross-instance similarities, all while minimizing the 

computational load. Significantly, empirical findings from 

numerous benchmarks spanning diverse tasks have 

demonstrated that the integration of the proposed CSC 

module in a plug-and-play fashion can enhance the 

performance of state-of-the-art MIL approaches. This 
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method has potential for drug effect prediction, diabetic 

retinopathy grading, and cancer detection and pathology 

analysis using histology. 
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