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Abstract— : In this research, we formulated the equation for water wave 

velocity potential on sloping bottoms. The resulting velocity potential 

equation for sloping bottoms closely mirrors that of flat bottoms, 

simplifying its application in sloping terrain scenarios. By exploring 

velocity potential on sloping bottoms, we derived conservation equations 

governing wave constant changes as waves transition from deep to 

shallow waters. These equations encompass the wave number 

conservation and energy conservation principles. Utilizing these 

conservation equations, we developed a comprehensive wave 

transformation model. The one-dimensional model focused on shoaling 

and breaking phenomena, while the two-dimensional model delved into 

refraction-diffraction, shoaling, and breaking. The model's framework 

allows for straightforward extensions, facilitating future advancements in 

the field. 

 

I. INTRODUCTION 

Waves undergo significant transformations as they travel 

from deep waters to shallow coastal areas. These changes 

involve alterations in their fundamental properties, such as 

a decrease in wavelength and an increase in wave 

amplitude, eventually leading to the breaking of waves. 

Consequently, a velocity potential capable of 

accommodating these variations in wave constants 

becomes essential.  

The velocity potential of water waves is typically 

determined by solving the Laplace equation. Dean (1994) 

utilized a flat bottom approach to formulate this potential, 

resulting in constant wave number and wave amplitude. 

However, this method obscures the detailed changes in 

wave constants. To address this limitation, researchers 

have explored the wave group concept, focusing on the 

conservation of energy within wave groups to model 

variations in wave number and wave height due to changes 

in water depth (Dean, 1994). Several wave transformation 

models have emerged from this concept, with the Mild 

Slope Equation (MSE) pioneered by Berkhoff (1972) 

being the most renowned. Subsequent researchers such as 

Booij (1983), Davies and Heathershaw (1984), and Porter 

(1995) have further developed and refined the MSE. Hsu, 

Lin, and Ou (2006) introduced the Complementary Mild 

Slope Equation (CMSE), while Lan, Yuan-Jyh, Hsu, Tai-

Wen, Lin, Ta-Yuan, and Liang, Shin-Jye (2012) proposed 

a wave transformation model utilizing the Higher Order 

Mild-Slope Equation.  

In our research, we delved into solving the Laplace 

equation within the context of a sloping bottom. This 

investigation enabled us to uncover the distinctive 

alterations in wave constants, specifically the conservation 

laws embedded within the solution of the Laplace equation 

at the sloping bottom. These fundamental conservation 

laws serve as the foundation upon which various wave 

transformation models can be constructed, such as shoaling 

breaking and diffraction refraction. 

 

II. GENERAL SOLUTION OF LAPLACE’S 

EQUATION  

The Laplace equation is, 
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Ƌ2𝜙

Ƌ𝑥2 +
Ƌ2𝜙

Ƌ𝑧2 = 0                                ….(1) 

𝜙(𝑥, 𝑧, 𝑡)  represents the potential velocity, where 𝑥 

represents the horizontal axis, 𝑧 represents the vertical axis, 

and 𝑡 represents time. The solution of this equation 

employs the separation variable method, as outlined by 

Dean (1994), which involves the application of periodic 

lateral boundary conditions. In the separation variable 

method, the velocity potential 𝜙(𝑥, 𝑧, 𝑡)  is conceptualized 

as the product of three distinct functions, namely, 

 𝜙(𝑥, 𝑧, 𝑡) = 𝑋(𝑥)𝑍(𝑧)𝑇(𝑡) 

𝑋(𝑥) is a function of 𝑥 only, 𝑍(𝑧)is a function of 𝑧 only, 

and 𝑇(𝑡) is a function of 𝑡 only. The properties of these 

functions are crucial to remember when formulating 

various equations using the velocity potential equation 

obtained through the separation variable method of the 

Laplace equation solution. 

Dean (1994) obtained the general solution of the Laplace 

equation in the form of, 

 𝜙(𝑥, 𝑧, 𝑡) = (𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥 )  

 

                       (𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) sin 𝜎𝑡      … (2) 

 

Where, 

 𝑋(𝑥) = (𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥 ) 

𝑍(𝑧) = (𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 

𝑇(𝑡) = sin 𝜎𝑡 

𝑘 and 𝜎 are wave constants, where 𝑘 represents the wave 

number 𝑘 =
2𝜋

𝐿
, while 𝐿 being the wavelength and σ 

represents the angular frequency 𝜎 =
2𝜋

𝑇
, and 𝑇 being the 

wave period. 

On the other hand, A, B, C, and D are constants of the 

solution that still need to be determined. To derive the 

values of these constants, the equation is manipulated at 

characteristic spatial points, where  cos 𝑘𝑥 = sin 𝑘𝑥, 

consequently, (2) can be expressed as, 

𝜙(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵 ) cos 𝑘𝑥  (𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) sin 𝜎𝑡 

The solution constants will be formulated by applying the 

bottom kinematic boundary condition as follows.  

𝑤−ℎ = −𝑢−ℎ

𝑑ℎ

𝑑𝑥
 

𝑤−ℎ bottom vertical water particle velocity at 𝑧 = −ℎ 

𝑢−ℎ bottom horizontal water particle velocity at 𝑧 = −ℎ 

ℎ water depth towards still water level. 

𝑑ℎ

𝑑𝑥
   Slope of the water, negative for waves propagating 

from deep water to shallow water.. 

 

Vertical water particle velocity is, 

𝑤(𝑥, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑧
 

= −(𝐴 + 𝐵 )𝑘 cos 𝑘𝑥  (𝐶𝑒𝑘𝑧 − 𝐷𝑒−𝑘𝑧) sin 𝜎𝑡 

 

𝑤−ℎ = −(𝐴 + 𝐵 )𝑘 cos 𝑘𝑥  (𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ) sin 𝜎𝑡 

Horizontal water particle velocity is, 

𝑢(𝑥, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑥
 

          = (𝐴 + 𝐵 )𝑘 sin 𝑘𝑥  (𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) sin 𝜎𝑡 

 

𝑢−ℎ = (𝐴 + 𝐵 )𝑘 sin 𝑘𝑥  (𝐶𝑒−𝑘ℎ + 𝐷𝑒𝑘ℎ) sin 𝜎𝑡 

For (𝐴 + 𝐵 ) ≠ 0 and at the characteristic point where 

cos 𝑘𝑥 = sin 𝑘𝑥 and sin 𝜎𝑡 ≠ 0, the bottom kinematic 

boundary condition equation becomes, 

(𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ) =  (𝐶𝑒−𝑘ℎ + 𝐷𝑒𝑘ℎ) 
𝑑ℎ

𝑑𝑥
…….(3) 

 

2.1 At the Flat Bottom 

At the flat bottom, where 
𝑑ℎ

𝑑𝑥
= 0, (3) transforms to 

 (𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ) = 0 

Obtaining 

𝐶 = 𝐷𝑒2𝑘ℎ 

Being substituted to (2) 

𝛷(𝑥, 𝑧, 𝑡) =  (𝐴 + 𝐵)𝑐𝑜𝑠𝑘𝑥(𝐷𝑒2𝑘ℎ𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 

                         𝑠𝑖𝑛(𝜎𝑡) 

 

𝛷(𝑥, 𝑧, 𝑡) = 2(𝐴 + 𝐵)𝐷𝑒𝑘ℎ𝑐𝑜𝑠𝑘𝑥  

                          
𝑒𝑘(ℎ+𝑧)𝑒𝑘𝑧 + 𝑒𝑘(ℎ−𝑧)

2
𝑠𝑖𝑛(𝜎𝑡) 

𝛷(𝑥, 𝑧, 𝑡) = 2(𝐴 + 𝐵)𝐷𝑒𝑘ℎ𝑐𝑜𝑠𝑘𝑥 cosh 𝑘(ℎ + 𝑧) 𝑠𝑖𝑛(𝜎𝑡) 

Defined as 𝐴 = 2𝐴 and 𝐵 = 2𝐵, thus  

𝛷(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵)𝐷𝑒𝑘ℎ𝑐𝑜𝑠𝑘𝑥 cosh 𝑘(ℎ + 𝑧) 

                        𝑠𝑖𝑛(𝜎𝑡) 

Is defined by the wave constant, 

𝐺 = (𝐴 + 𝐵)𝐷𝑒𝑘ℎ 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺 𝑐𝑜𝑠𝑘𝑥 cosh 𝑘(ℎ + 𝑧) 𝑠𝑖𝑛(𝜎𝑡)         (4) 

It is important to note that in 𝐺, there is an addition of two 

constants, namely (𝐴 + 𝐵), where Hutahaean (2003a) 

http://www.ijaers.com/
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demonstrated that 𝐴 = 𝐵, thus 𝐺 in equation (4) has a 

double value. 

2.2 At the Sloping Bottom 

Kinematic bottom boundary condition at the sloping 

bottom is expressed as, 

(𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ) = (𝐶𝑒−𝑘ℎ + 𝐷𝑒𝑘ℎ)
𝑑ℎ

𝑑𝑥
 

𝐶𝑒−𝑘ℎ (1 −
𝑑ℎ

𝑑𝑥
) = 𝐷𝑒𝑘ℎ (1 +

𝑑ℎ

𝑑𝑥
) 

𝐶 = 𝐷𝑒2𝑘ℎ
1 +

𝑑ℎ
𝑑𝑥

1 −
𝑑ℎ
𝑑𝑥

 

Defined as :   𝛼 =
1+

𝑑ℎ

𝑑𝑥

1−
𝑑ℎ

𝑑𝑥

 

𝐶 = 𝐷 𝛼 𝑒2𝑘ℎ 

𝛷(𝑥, 𝑧, 𝑡) =  (𝐴 + 𝐵)𝑐𝑜𝑠𝑘𝑥(𝐷 𝛼 𝑒2𝑘ℎ𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 

                         𝑠𝑖𝑛(𝜎𝑡) 

𝛷(𝑥, 𝑧, 𝑡) = 2(𝐴 + 𝐵)𝐷𝑒𝑘ℎ𝑐𝑜𝑠𝑘𝑥 

                       (
 𝛼 𝑒𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)

2
) 𝑠𝑖𝑛(𝜎𝑡) 

𝛷(𝑥, 𝑧, 𝑡) = 2(𝐴 + 𝐵)𝐷𝑒𝑘ℎ𝑐𝑜𝑠𝑘𝑥 𝛽(𝑧)𝑠𝑖𝑛(𝜎𝑡) 

Where  : 𝛽(𝑧) =
 𝛼 𝑒𝑘(ℎ+𝑧)+𝑒−𝑘(ℎ+𝑧)

2
 

By defining the new constant 𝐺 as stated in the previous 

section, the equation for the velocity potential on a 

sloping bottom is obtained as follows, 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺 𝑐𝑜𝑠𝑘𝑥 𝛽(𝑧)𝑠𝑖𝑛(𝜎𝑡)                 ……(5)   

Subsequently, a comparative analysis was conducted 

between the values of 𝛽(𝑧) and  cosh 𝑘(ℎ + 𝑧),  for 

different bottom slope values represented by 
𝑑ℎ

𝑑𝑥
, when 

𝑘(ℎ + 𝑧) = 𝜃𝜋 where 𝜃 = 2.1,   and tanh 𝜃𝜋 = 1, as 

indicated in Table (1). The use of tanh 𝜃𝜋 = 1 is specific 

to deep water conditions, a concept that will be elaborated 

upon in section (3). Consequently, 𝜃 will be denoted as the 

deep water coefficient henceforth. 

Table (1). The comparison between 𝛽(𝜃𝜋) =
𝛼𝑒𝜃𝜋+𝑒−𝜃𝜋

2
 

and 𝑐𝑜𝑠ℎ 𝜃𝜋 

𝑑ℎ

𝑑𝑥
 𝛼 𝛽(𝜃𝜋) cosh 𝜃𝜋 

𝜀 

(%) 

-0.01 0.98 359.315 366.573 1.98 

-0.02 0.961 352.198 366.573 3.922 

-0.03 0.942 345.22 366.573 5.825 

-0.04 0.923 338.376 366.573 7.692 

-0.05 0.905 331.662 366.573 9.524 

-0.06 0.887 325.075 366.573 11.321 

-0.07 0.869 318.611 366.573 13.084 

-0.08 0.852 312.266 366.573 14.815 

-0.09 0.835 306.039 366.573 16.514 

-0.1 0.818 299.924 366.573 18.182 

Note : 𝜀 = |
𝛽(𝜃𝜋)−cosh 𝜃𝜋

cosh 𝜃𝜋
| 𝑥100% 

In Table (1), the disparity between the values of 𝛽(𝜃𝜋) =
𝛼𝑒𝜃𝜋+𝑒−𝜃𝜋

2
  and cosh 𝜃𝜋, where tanh 𝜃𝜋 = 1., is illustrated. 

It is evident that the difference increases with larger |
𝑑ℎ

𝑑𝑥
|or 

steeper bed slope. However, it is common for the seafloor 

to have a gentle slope with a bed slope of less than 0.01. 

Consequently, it can be inferred that 𝛽(𝜃𝜋) ≈ cosh 𝜃𝜋) or 

in other words, 𝛽(𝜃𝜋) can be approximated by ccosh 𝜃𝜋. 

Table (2) Presents the comparison between 
𝛽1(𝜃𝜋)

𝛽(𝜃𝜋)
 and 

𝑡𝑎𝑛ℎ 𝜃𝜋 at 𝜃𝜋 = 2.1. 

𝑑ℎ

𝑑𝑥
 𝛼 

𝛽1(𝜃𝜋)

𝛽(𝜃𝜋)
 

tanh 𝜃𝜋 

-0.01 0.98 1 1 

-0.02 0.961 1 1 

-0.03 0.942 1 1 

-0.04 0.923 1 1 

-0.05 0.905 1 1 

-0.06 0.887 1 1 

-0.07 0.869 1 1 

-0.08 0.852 1 1 

-0.09 0.835 1 1 

-0.1 0.818 1 1 

 

Subsequently, it is defined that 

𝛽1(𝑧) =
 𝛼 𝑒𝑘(ℎ+𝑧) − 𝑒−𝑘(ℎ+𝑧)

2
 

This equation is similar to sinh 𝑘(ℎ + 𝑧), and a 

comparison is made between 
𝛽1(𝜃𝜋)

𝛽(𝜃𝜋)
 and tanh 𝜃𝜋 for the 

deep water coefficient 𝜃 = 2.1, as shown in Table (2). 

Table (2) illustrates that at 𝜃 = 2.1, it is observed that 
𝛽1(𝜃𝜋)

𝛽(𝜃𝜋)
= tanh 𝜃𝜋. Based on this comparison, it can be 

concluded that the cosh 𝑘(ℎ + 𝑧)  function can be 

employed as a substitute for 𝛽(𝑧). Consequently, the 

velocity potential equation on a sloping bottom can be 

http://www.ijaers.com/
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replaced with the velocity potential equation on a flat 

bottom, namely equation (4), 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺 cos 𝑘𝑥 cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡   ……(4) 

Where the complete equation is, 

𝜙(𝑥, 𝑧, 𝑡) =
𝐺

2
(cos 𝑘𝑥 + sin 𝑘𝑥) cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 

                                                                          …..(5) 

III. EQUATIONS OF CONSERVATION. 

3.1 Conservation Equation of Wave Number. 

In solving the Laplace equation using the separation 

variable method, it is assumed that the velocity potential is 

a product of three functions. In equation (4), where 𝑍(𝑧) 

represents a function of 𝑧 only, it is defined as, 

 

𝑍(𝑧) = cosh 𝑘(ℎ + 𝑧) 

Therefore, on a sloping bottom where changes in water 

depth ℎ and wave number 𝑘 occur, the following applies, 

𝑑𝑍(𝑧)

𝑑𝑥
= 0 

sinh 𝑘(ℎ + 𝑧)
𝑑𝑘(ℎ + 𝑧)

𝑑𝑥
= 0 

Where 

𝑑𝑘(ℎ + 𝑧)

𝑑𝑥
= 0 

In this equation, it is essential to determine the appropriate 

value for 𝑧 . Hutahaean (2022a, b), in formulating the wave 

amplitude function using the kinematic free surface 

boundary condition, determined that the suitable value for 

𝑧 is 𝑧 =
𝐴

2
. Therefore, the conservation equation of wave 

number becomes, 

𝑑𝑘(ℎ+
𝐴

2
)

𝑑𝑥
= 0                                                 …….(6) 

 

Consequently, the equation obtained is, 

𝑘 (ℎ +
𝐴

2
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

These constants apply throughout the entire water body, 

including deep waters where 

tanh 𝑘 (ℎ +
𝐴

2
) = 1 

For   

𝑘 (ℎ +
𝐴

2
) = 𝜃𝜋 

The parameter 𝜃 will be henceforth referred to as the deep 

water coefficient. Hutahaean (2023), through the study of 

the breaker depth index 
𝐻𝑏

ℎ𝑏
, 𝐻𝑏   represents the breaker 

height and ℎ𝑏 represents the breaker depth, recommends 

the value 𝜃 = 2.1. 

Where small amplitude is assumed, (6) can be expressed is  

𝑑𝑘ℎ

𝑑𝑥
= 0 

 

For a wave moving from point 𝑥 with water depth ℎ𝑥 to 

point 𝑥 + 𝛿𝑥 with water depth ℎ𝑥+𝛿𝑥, where ℎ𝑥+𝛿𝑥 is 

shallower than ℎ𝑥, there exists a relationship. 

𝑘𝑥+𝛿𝑥 =
𝑘𝑥ℎ𝑥

ℎ𝑥+𝛿𝑥

 

It can be observed that 𝑘𝑥+𝛿𝑥 is greater than 𝑘𝑥, or the 

wavelength 𝐿𝑥+𝛿𝑥  is smaller than 𝐿𝑥. This indicates a 

shortening of the wavelength when waves move from 

deeper water to shallower water. This means that in the 

wave number conservation equation, there is a 

phenomenon of shoaling, signifying a change in 

wavelength. 

 

As a consequence of equation (6), for small amplitudes, the 

following applies, 

𝑑 tanh 𝑘ℎ 

𝑑𝑥
=

1

𝑐𝑜𝑠ℎ2 𝑘ℎ  

𝑑𝑘ℎ

𝑑𝑥
= 0 

Or 

tanh 𝑘ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

As known, the wave constants 𝑘, 𝐺 and 𝐴 are functions of 

water depth ℎ, meaning they change with depth or are 

functions of ℎ. Therefore, waves moving from deep water 

to shallow water will experience changes in these three 

wave constants. The water depth ℎ is a function of the 

horizontal axis 𝑥, denoted as ℎ = ℎ(𝑥). Consequently, 𝑘 =

𝑘(𝑥), 𝐺 = 𝐺(𝑥) and 𝐴 = 𝐴(𝑥). This implies the existence 

of values for 
𝑑𝑘

𝑑𝑥
, 

𝑑𝐺

𝑑𝑥
 and 

𝑑𝐴

𝑑𝑥
. The governing equation 

controlling the changes in these wave constants is the 

continuity equation, where, with the variable velocity 

potential 𝜙, this equation becomes the Laplace equation. 

In deep water, tanh 𝑘ℎ = 1. Therefore, for all water 

depths, including shallow water, tanh 𝑘ℎ = 1.  holds true. 

This condition is different from linear wave theory, where 

tanh 𝑘ℎ = 1 changes with varying water depth. 

3.2 Conservation of Energy Equation 

As it is known, the wave constants 𝑘, 𝐺 and 𝐴 change 

with depth or are functions of water depth ℎ. Therefore, 

waves moving from deep water to shallow water will 

experience changes in these three wave constants. The 

water depth ℎ is a function of the horizontal axis 𝑥, denoted 

as ℎ = ℎ(𝑥). Consequently, 𝑘 = 𝑘(𝑥), 𝐺 = 𝐺(𝑥) and 𝐴 =

𝐴(𝑥) leading to the existence of values for 
𝑑𝑘

𝑑𝑥
, 

𝑑𝐺

𝑑𝑥
 dan 

𝑑𝐴

𝑑𝑥
. 

The governing equation controlling the changes in these 

wave constants is the continuity equation, where, with the 

variable velocity potential 𝜙 this equation becomes the 

Laplace equation. 

Equation (5) is substituted into (1), and when evaluated at 

the characteristic point, it yields, 

𝑑2𝐺

𝑑𝑥2 = 0                                                 …………(7) 
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If the velocity potential given in equation (4) is used, and 

considering equation (7), 

𝐺
𝑑𝑘

𝑑𝑥
+ 2𝑘

𝑑𝐺

𝑑𝑥
= 0                                    ………..(8) 

Considering that 𝐺 represents the rate of energy transfer 

per unit time, equation (8) can be referred to as the energy 

conservation equation. 

 

IV. THE WAVE AMPLITUDE FUNCTION 

By integrating the kinematic free surface boundary 

condition with respect to time, using the velocity potential 

given in equation (4), and evaluating it at characteristic 

points in space and time, Hutahaean (2022a,b) derived the 

water surface elevation equation as follows: 

𝜂(𝑥, 𝑡) = 𝐴 cos 𝑘𝑥 cos 𝜎𝑡   

𝐴 is wave amplitude. 

𝐴 =
𝐺𝑘

2𝜎𝛾2
(1 −

𝑘𝐴

2
) cosh 𝜃𝜋                      ……..(9) 

This equation is referred to as the wave amplitude function. 

𝛾2 is the coefficient in the time derivative of the Taylor 

series, due to the truncation of the series, to  the first 

derivative only. Hutahaean (2022a) obtained 𝛾2 = 1.4.  𝜃 

is the coefficient for deep water. 

 

Taylor series for function 𝑓 = 𝑓(𝑥, 𝑡) 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

                                        +
𝛿𝑡2

2!

Ƌ2𝑓

Ƌ𝑡2 + 𝛿𝑡 𝛿𝑥
Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2!

Ƌ2𝑓

Ƌ𝑥2 +

⋯.  

When truncation is performed, only the first derivative is 

used, Hutahaean (2022a),  

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾2𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
  

While for function 𝑓 = 𝑓(𝑥, 𝑧, 𝑡) 

𝑓(𝑥 + 𝛿𝑥, 𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝛾3𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                                                    +𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ +𝛿𝑧

Ƌ𝑓

Ƌ𝑧
  

 

Equation (9) can be written as the equation for 𝐺 as 

follows.  

𝐺 =
2𝜎𝛾2𝐴

𝑘(1−
𝑘𝐴

2
) cosh 𝜃𝜋

                                 ………(10) 

 

V. SHOALING-BREAKING MODEL 

In this section, a one-dimensional wave transformation 

model is developed, including only shoaling and breaking. 

Waves transitioning from deep water to shallower depths 

undergo alterations in the parameters 𝐺, 𝑘 and 𝐴 - a 

phenomenon known as shoaling. During shoaling, the 

wave number 𝑘 increases, leading to a shorter wavelength, 

and the wave amplitude 𝐴 rises until reaching a breaking 

point at a specific depth. Developing shoaling and breaking 

models becomes straightforward by employing two 

conservation equations and the wave amplitude function. 

In the energy conservation equation, alterations in 𝐺 

interact with changes in 𝑘, while the wave number 

conservation equation shows a connection between 

variations in wave number 𝑘 and changes in wave 

amplitude 𝐴 due to alterations in depth ℎ. Consequently, 

working with these conservation laws reveals an intricate 

interplay between the three wave constants: 𝐺, 𝑘 and 𝐴 

Equation (8) can be written as, 

1

𝐺

𝑑𝐺

𝑑𝑥
= −

1

2𝑘

𝑑𝑘

𝑑𝑥
 

This equation is multiplied by 𝑑𝑥 and integrated, yielding: 

∫
𝑑𝐺

𝐺

𝑥+𝛿𝑥

𝑥
= −

1

2
∫

𝑑𝑘

𝑘

𝑥+𝛿𝑥

𝑥
  

ln 𝐺𝑥+𝛿𝑥 − ln 𝐺𝑥 = −
1

2
(ln 𝑘𝑥+𝛿𝑥 − ln 𝑘𝑥) 

Or 

𝐺𝑥+𝛿𝑥 = 𝑒ln 𝐺𝑥−
1

2
(ln 𝑘𝑥+𝛿𝑥−ln 𝑘𝑥)

                    ……..(11) 

This equation represents the relationship between the 

change in 𝐺 concerning the change in 𝑘, for waves moving 

from point 𝑘, to point 𝑥 + 𝛿𝑥 where ℎ𝑥+𝛿𝑥 < ℎ𝑥. From this 

equation, it is evident that knowing 𝑥 + 𝛿𝑥 where ℎ𝑥+𝛿𝑥 <

ℎ𝑥 is necessary to calculate 𝐺𝑥+𝛿𝑥. Therefore, what is 

needed is the equation describing the change in wave 

number 𝑘 first. 

 

Equation (9) is differentiated with respect to the horizontal 

axis 𝑥 

𝑑𝐺

𝑑𝑥
=

2𝜎𝛾2

𝑘 (1 −
𝑘𝐴
2

) cosh 𝜃𝜋

𝑑𝐴

𝑑𝑥
 

                             −
2𝜎𝛾2𝐴

𝑘2 (1 −
𝑘𝐴
2

) cosh 𝜃𝜋

𝑑𝑘

𝑑𝑥
 

In the differential, the term is zero 
𝑑(1−

𝑘𝐴

2
)

𝑑𝑥
 based on the 

wave number conservation equation. Considering (9), this 

equation can be written as, 

𝑑𝐺

𝑑𝑥
=

𝐺

𝐴

𝑑𝐴

𝑑𝑥
−

𝐺

𝑘

𝑑𝑘

𝑑𝑥
 

Upon substitution into (8),  

1

2𝑘

𝑑𝑘

𝑑𝑥
=

1

𝐴

𝑑𝐴

𝑑𝑥
                                         ...................(12) 

The wave number conservation equation can be written as, 
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𝑑𝐴

𝑑𝑥
= −

2

𝑘
(ℎ +

𝐴

2
)

𝑑𝑘

𝑑𝑥
− 2

𝑑ℎ

𝑑𝑥
 

Substituting into (12), 
𝑑𝑘

𝑑𝑥
= −

2𝑘

(2ℎ+
3𝐴

2
)

𝑑ℎ

𝑑𝑥
                                         …….(13) 

This equation is the change in wave number 𝑘 equation that 

satisfies the energy conservation equation, wave number 

conservation equation, and kinematic free surface 

boundary condition, where (9) is derived from the 

kinematic free surface boundary condition equation 

 

In a very small interval, small 𝛿𝑥 𝑘𝑥+𝛿𝑥 can be assessed as, 

𝑘𝑥+𝛿𝑥 = 𝑘𝑥 + 𝛿𝑥 
𝑑𝑘

𝑑𝑥
 

Furthermore, the change in wave amplitude 𝐴 can be 

obtained by differentiating the wave amplitude function 

with respect to the horizontal axis 𝑥, 

𝑑𝐴

𝑑𝑥
=

𝐺

4𝜎𝛾2

𝑑𝑘

𝑑𝑥
(1 −

𝑘𝐴

2
) 𝑐𝑜𝑠ℎ(𝜃𝜋)                 …….(14) 

 

where 
𝑑𝑘

𝑑𝑥
  is obtained from (13). In a very small interval 𝛿𝑥, 

𝐴𝑥+𝛿𝑥 can be calculated as follows, 

𝐴𝑥+𝛿𝑥 = 𝐴𝑥 + 𝛿𝑥 
𝑑𝐴

𝑑𝑥
 

  

In the following section, an example of shoaling model 

results is presented for waves with a wave period 𝑇 = 7.15 

seconds and wave amplitude in deep water \𝐴0 = 1.2 m 

meters, in waters with a bottom slope 
𝑑ℎ

𝑑𝑥
= −0.01. The 

calculation parameters used are the deep water coefficient 
𝑑ℎ

𝑑𝑥
= −0.01. The model results are presented in Figure 1. 

 

The wave period is calculated based on the input wave 

amplitude (Hutahaean (2023a)). 

𝑇 = √8 𝜋2(𝛾2+
𝛾3
2

)
2

𝐴

𝑔
 (𝑠𝑒𝑐)                        ……(15) 

where 𝛾3 = 1.8 (Hutahaean (2022a)). 

 
Fig (1) The outcomes of shoaling-breaking model. 

 

The results of the shoaling and breaking model (Fig (1)) 

show that breaking occurs at a breaker depth ℎ𝑏 = 4.258 

m, breaker height \ℎ𝑏 = 4.258 m, and breaker length
𝐻𝑏

ℎ𝑏
=

0.692 dan 
𝐻𝑏

𝐿𝑏
= 0.637. 

 

Breaking occurs when 
𝑑𝐴

𝑑𝑥
= 0.. Therefore, from (14), 

breaking occurs when(1 −
𝑘𝐴

2
) = 0,, and subsequently, 

there is a reduction in wave amplitude when 
𝑘𝐴

2
> 1. 

 

VI. REFRACTION – DIFFRACTION MODEL. 

In this section, a comprehensive two-dimensional wave 

transformation model is formulated, encompassing 

refraction, diffraction, shoaling, and breaking phenomena. 

The diffraction considered here is solely due to 

bathymetric features and does not account for the 

dispersion of wave energy in a direction perpendicular to 

the wave's propagation. 

 

The refraction-diffraction model was derived based on the 

shoaling-breaking equations elaborated in the preceding 

section. In the shoaling-breaking model, wave propagation 

occurs along the horizontal -𝑥 axis. However, in this 

section, the wave travels in the direction of the 𝛼, forming 

an angle α with the horizontal -𝑥 axis, as illustrated in 

Figure 2. 

 

Fig (2). Coordinate system, the relationship between ξ 

and x. 

 

The relationship between the 𝜉 -axis and the x-axis is given 

by, 

𝜉(𝑥) = 𝑥 cos 𝛼 

Where 

𝑑𝜉

𝑑𝑥
= cos 𝛼                                                      .......(16) 
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For the wave number 𝑘 which is a function of 𝜉, denoted 

as 𝑘 = 𝑘(𝜉(𝑥)),  

𝑑𝑘

𝑑𝑥
=

𝑑𝑘

𝑑𝜉
 
𝑑𝜉

𝑑𝑥
 

substituting 𝑥 in (13) with 𝜉 and then replacing it in 
𝑑𝑘

𝑑𝜉
 , 

while 
𝑑𝜉

𝑑𝑥
  is substituted with (16). 

𝑑𝑘

𝑑𝑥
= −

2𝑘

(2ℎ +
3𝐴
2

)

𝑑ℎ

𝑑𝜉
cos 𝛼 

Similarly, for the wave amplitude 𝐴 = 𝐴(𝜉(𝑥)) 

𝑑𝐴

𝑑𝑥
=

𝑑𝐴

𝑑𝜉
cos 𝛼 

𝑑𝐴

𝑑𝑥
=

𝐺

4𝜎𝛾2

𝑑𝑘

𝑑𝜉
(1 −

𝑘𝐴

2
) 𝑐𝑜𝑠ℎ(𝜃𝜋) cos 𝛼 

where 
𝑑𝑘

𝑑𝜉
 is equation (16), replacing 𝑥 to 𝜉. 

The calculation involves changes in wave direction. The 

wave direction 𝛼 is 

𝛼 = atan (
𝑣

𝑢
)                                       …….(17) 

Ƌ𝛼

Ƌ𝑥
=

𝑢
Ƌ𝑣

Ƌ𝑥
−𝑣

Ƌ𝑢

Ƌ𝑥

𝑢2+𝑣2                                      ………(18) 

 

Where 𝑢 represents the particle velocity in the horizontal- 

𝑥 direction, and 𝑣 represents the particle velocity in the 

horizontal- 𝑦 direction. To calculate these velocities, a 

three-dimensional velocity potential is utilized. 

 

𝜙(𝑥, 𝑦) = 𝐺 cosh 𝑘(ℎ + 𝑧) 

                   cos 𝑘(𝑥 cos 𝛼 + 𝑦 sin 𝛼) sin 𝜎𝑡 

Where 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑥
 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑦
 

 

4 The Results of Refraction-Diffraction Model. 

In the following section, an example of the execution 

results of the refraction-diffraction model is presented for 

a coastal bathymetry configuration in the form of a bay 

(Fig (3)), with waves having a wave period 𝑇 = 7.15 

seconds and a wave amplitude in deep water  𝐴0 = 1.2 

meters. The incoming wave angle forms an angle 𝐴0 = 1.2  

. The calculation parameters used include the deep water 

coefficient 𝜃 = 2.1 and 𝛾2 = 1.4.  

 
Fig (3). Coastal bathymetry with an incoming wave angle 

𝛼 = 00 

 

                
 

Fig (4). Wave height contours with an incoming wave 

angle 𝛼 = 00 

 
Fig (5). 3D wave height contours with an incoming wave 

angle 𝛼 = 00 

 

In Figures (4) and (5), the spread of wave energy towards 

the bay's sides is evident, indicating the model's effective 

simulation of wave refraction-diffraction. Furthermore, the 

model accurately simulates shoaling and breaking 

phenomena. 

Subsequently, the model results are showcased for the 

same wave with an incoming wave angle of 𝛼 = 300 (Fig 

(6)). The outcomes are displayed in Fig (7) and Fig (8), 

demonstrating the model's proficient simulation of 

refraction, shoaling, and breaking processes. 
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Fig (6). Contour bathymetry with an incoming wave 

angle 𝛼 = 300 

 

 
 

Fig (7). Wave height contours with an incoming wave 

angle 𝛼 = 300 

 
Fig (8). 3D wave height with an incoming wave angle 

𝛼 = 300 

 

In the subsequent analysis, the model is applied to a 

submerged island or sandbar (Fig (9)). Waves with a period 

of  𝑇 = 6.2  seconds and an amplitude of 𝐴0 = 0.9 m  are 

utilized. The use of smaller waves is intentional; 

employing waves with larger amplitudes, such as 𝐴0 = 1.2 

meters, would lead to the island being submerged. 

Consequently, the wave height contours would flatten, 

devoid of any visible variation. 

 

Fig (10) Submerged island bathymetry 

 

 

                
Fig (11) Wave height contours 
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Fig (12) 3D wave height 

 

The model execution results on the submerged island (Fig 

(11) and Fig (12)) also demonstrate that the model can 

simulate the phenomena of refraction-diffraction, shoaling, 

and breaking effectively. 

  

 

VII. CONCLUSIONS 

By solving the Laplace equation along the sloping 

bottom, conservation equations governing water waves are 

derived, including the wave number conservation equation 

and the energy conservation equation. These equations 

regulate variations in wave constants as waves transition 

from deeper to shallower waters. 

Utilizing these conservation equations, formulating the 

equation for alterations in water wave constants as waves 

progress from deep to shallow waters becomes 

straightforward. 

Alterations in wave constants are interconnected, with 

changes in wave amplitude influencing wave length and 

vice versa. Consequently, modifications in these wave 

constants must be addressed simultaneously. 

The outcomes from the 1-D shoaling breaking model and 

2-D refraction-diffraction model simulations reveal the 

model's ability to effectively replicate shoaling-breaking 

and refraction-diffraction phenomena influenced by 

bathymetry. A necessary advancement involves 

incorporating the diffraction phenomenon into the 2-D 

model, accounting for the spread of wave energy 

perpendicular to the wave's direction. 
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