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Abstract— The Bouc Wen magnetorheological damper model has eight 

unknown parameters, and the mathematical expression of the model 

includes the evolution quantity, absolute value term, and exponential 

term of differential equation, which complicates parameter 

identification. Researchers in related fields have made numerous 

attempts to solve the problem that the model's parameter identification 

method is complex and difficult to implement. A method combining 

nonlinear least square method is proposed to identify the parameters of 

the Bouc-Wen model of magnetorheological damper based on the 

damping characteristics test. Analyze the relationship between the 

identification parameters and the current and use the curve fitting 

toolbox to fit the functional relationship. At the same time, use the 

Simulink toolbox to create a Bouc-Wen simulation model of a 

magnetorheological damper and select sinusoidal signals with varying 

current, amplitude, and frequency for simulation and comparison. The 

Bouc-Wen model is validated using additional amplitude and frequency 

test data, and the results show a high degree of fit between the test and 

simulation results. This method can effectively identify the dynamic 

model's parameters. 

 

I. INTRODUCTION 

Magnetorheological damper is a semi-active 

intelligent control device with good performance, which has 

the advantages of not being affected by faults, simple 

structure, low power consumption, controllable damping 

force and rapid response [1]. An intelligent control material 

(magnetorheological fluid) is filled in the 

magnetorheological damper. Applying the rheological 

properties of the magnetorheological fluid, the magnetic 

field strength of the environment where the 

magnetorheological fluid is located can be adjusted by 

controlling the current flowing through the copper wire coil 

wound on the outer wall of the magnetorheological damper, 

so that the damping force output by the magnetorheological 
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damper can be continuously adjusted within a certain range. 

Therefore, magnetorheological dampers have been widely 

used in many control fields such as mechanical vibration 

reduction and bridge shockproof [2]. However, the MR fluid 

in the rheological process will undergo shear thinning, 

which not only makes its damping characteristic curve have 

nonlinear hysteresis characteristics, but also makes it 

difficult to establish an accurate, simple, and practical 

mechanical model of the MR damper [3]. Up to now, there 

are mainly two kinds of modeling for the damping 

characteristics of magnetorheological dampers: theoretical 

modeling and experimental modeling. Due to the gap in 

establishing a mature theoretical modeling system at this 

stage, researchers from relevant institutions have invested a 

lot of research on experimental modeling methods. At 

present, the common and practical parameterized dynamic 

models of magnetorheological dampers mainly include 

Bingham model, double viscous hysteresis model, Bouc 

Wen model, hyperbolic tangent model, modified Dahl 

model, phenomenal model, etc. Nonparametric dynamic 

models mainly include polynomial model, neural network 

model, differential equation model, etc. [4-5]. Among them, 

Bouc Wen model can better simulate the nonlinear 

hysteretic characteristics of dampers, so most scholars at 

home and abroad use this model in the simulation analysis 

of practical problems. 

The Bouc Wen model of magnetorheological damper 

contains eight unknown parameters, and the mathematical 

expression of the model introduces the evolution quantity, 

absolute value term and exponential term of differential 

equation, which increases the difficulty of parameter 

identification. To solve the problem that the parameter 

identification method of the model is complex and difficult 

to realize, researchers in related fields have made a lot of 

attempts. Literature [6] proposed an improved charged 

system search optimization method to identify the 

parameters of Bouc Wen model. This method has strong 

robustness and accuracy and can successfully identify the 

unknown parameters of highly nonlinear hysteretic systems. 

However, the optimization mechanism of this method is 

complex, and too many factors are considered, so it is 

necessary to search for the optimal solution in the entire data 

set space; Literature [7] used genetic algorithm to identify 

the unknown parameters in Bouc Wen model and improved 

the identification accuracy by gradually narrowing the 

parameter value range. However, the process has too many 

iterations, slow identification speed and low efficiency; 

Literature [8] proposed a method combining genetic 

algorithm and pattern search method. The advantages of the 

two methods complement each other and identify the 

unknown parameters of Bouc Wen model. This method can 

accurately describe the hysteresis characteristics of 

magnetorheological damper. However, the accuracy and 

reliability of the identified parameter data are poor when the 

excitation amplitude is large; Literature [9] uses the 

Simulink Design Optimization toolbox in MATLAB 

software to identify the unknown parameters of Bouc Wen 

model. Although this method can reduce the complexity of 

parameter identification process to a certain extent, it also 

reduces the accuracy of parameter identification; Literature 

[10] uses unscented Kalman filtering algorithm to identify 

Bouc Wen model parameters online. This method can 

ensure the accuracy of parameter identification, but the 

identification process is cumbersome, the mathematical 

model is complex, and too many factors are considered. 

Particle Swarm Optimization (PSO) is an intelligent 

optimization algorithm proposed in recent years with the 

rapid development of information industry and the 

improvement of computer technology. Compared with the 

above mentioned methods, PSO has the advantages of 

simple algorithm, fast convergence speed, easy 

implementation, and strong computing application, which 

makes it widely concerned in signal processing, multi-

objective constrained optimization and other application 

fields. 

The least square method is a parameter identification 

method to identify the parameters of nonlinear static model 

based on the least square sum of errors [11]. The nonlinear 

least squares method has the advantage of high accuracy of 

parameter identification, but in the actual application 

process, the optimal solution obtained has a large 

relationship with the initial value, so the prerequisite for 

obtaining the optimal solution with high accuracy is to give 

a good initial value. 

Based on the discussion done above, this paper 

proposes a parameter identification method uses nonlinear 

least square method based on the Bouc Wen model of 

magnetorheological damper and damping characteristics 
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test. By analyzing the change trend of the identified 

parameters with the current, the function relationship is 

fitted with the help of the curve fitting toolbox. At the same 

time, the Simulink toolbox is used to build the Bouc Wen 

simulation model of the magnetorheological damper, and 

the sinusoidal signals under different currents and other 

amplitudes and frequencies are selected to verify the 

universality and accuracy of the parameter identification 

results through numerical simulation. 

 

II. MAGNETORHEOLOGICAL 

CHARACTERISTICS AND BOUC WEN 

MODEL 

2.1 Characteristics of Magnetorheological Damper 

The mechanical performance of magnetorheological 

damper is carried out on the tensile test bench [12] . The 

structural diagram of magnetorheological damper [13] is 

shown in Figure 1.  

 

Fig.1: Schematic diagram of magnetorheological damper 

[13] 

 

The platform uses the different frequency and 

amplitude signals generated by the vibration exciter and the 

current provided by the DC power supply for the clamped 

magnetorheological damper to generate the data changes of 

damping force, piston rod displacement and other 

parameters. Where, the excitation signal is a sine signal 

𝑥 = 𝐴𝑆𝑖𝑛(2𝜋𝑓𝑡) , amplitude 𝐴 = 10𝑚𝑚 , frequency 𝑓 =

0.4𝐻𝑧 , and current intensity is 0, 0.25, 0.50, 0.75, 1.00A 

respectively. The displacement-damping force and speed-

damping force curves obtained from the work diagram and 

test data processing under various working conditions are 

shown in Figures 2 to 3. 

 

Fig.2: Displacement-damping force curve 

 

Fig.3: Speed-damping force curve 

 

2.2 Bouc Wen Model of Magnetorheological Damper  

Bouc Wen model was proposed by Bouc Wen in 1976. 

Its structure is shown in Figure 4, which is composed of a 

hysteretic system, a viscous damping unit and a spring unit 

in parallel [14]. 
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Fig.4: Bouc-wen model structure diagram 

 

This model can better describe the hysteretic 

characteristics of the damper and considers the advantages 

of easy numerical processing and strong universality. Its 

mathematical expression is as follows: 

{
𝐹 = 𝑐0�̇� + 𝑘0(𝑥 − 𝑥0) + 𝛼𝑧

�̇� = −𝛾|�̇�|𝑧|𝑧|𝑛−1 − 𝛽�̇�|𝑧|𝑛 + 𝐴�̇�
                (1) 

Where: F is the output damping force of the damper, 

c0 is the viscosity coefficient of the magnetorheological 

material after yielding, k0 is the spring stiffness, x0 is the 

initial deformation of the spring, α is the ratio of the yield 

stiffness to the stiffness before yield, z is the hysteretic 

displacement, z is the first derivative of the hysteretic 

displacement, γ is the coefficient affecting the linearity of 

the transition section, and n is the coefficient affecting the 

smoothness, β to affect the shape coefficient of the 

hysteresis loop, A is the amplitude coefficient of the 

hysteresis loop, x is the displacement of the damper piston 

rod, and �̇� is the velocity of the damper piston rod.  

The Bouc Wen model of magnetorheological damper 

includes c0, k0, x0, α, γ, n, β , A eight unknown parameters 

need to be optimized and identified. To simplify the 

difficulty of identification, this paper sets the initial 

displacement x0 to 0. In addition, for a specific 

magnetorheological fluid, the difference of parameter n is 

not large. The Bouc-Wen model built in the Simulink 

environment is shown in Figure 5. 

 

Fig.5: Bouc-Wen model built under Simulink environment 

 

III. PARAMETER IDENTIFICATION 

The least square method is a parameter identification 

method to identify the parameters of nonlinear static model 

based on the least square sum of errors [15]. The nonlinear 

least squares method has the advantage of high accuracy of 

parameter identification, but in the actual application 

process, the optimal solution obtained has a large 

relationship with the initial value, so the prerequisite for 

obtaining the optimal solution with high accuracy is to give 

a good initial value. 

Let the mathematical expression of the identified 

model be: 

𝑦 = 𝑓(𝑥′, 𝑥′′, ⋯ , 𝜃′, 𝜃′′, ⋯ )                      (2) 

Where: 𝑦  is the output of the system; 𝑥′, 𝑥′′, ⋯ are 

inputs; 𝜃′, 𝜃′′, ⋯  is a parameter. When estimating 

parameters, the mathematical expression f of the model is 

known and the data obtained through experiments are 

(𝑥1
′ , 𝑥1

′′, ⋯ , 𝑦1) , (𝑥2
′ , 𝑥2

′′,⋯ , 𝑦2) , (𝑥𝑛
′ , 𝑥𝑛

′′,⋯ , 𝑦𝑛) . The 

frequency was set to 0.4 Hz o.7 Hz and the current was set 

to 0.5A for the simulation environment. The input limit is 

set to 5 and total output was 40 as shown in table 1. 

The objective function Q of the sum of squares of 
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nonlinear model errors is 

𝑄 = ∑  𝑁
𝑛=1 [𝑦𝑛 − 𝑓(𝑥𝑛

′ , 𝑥𝑛
′′, ⋯ , 𝜃′, 𝜃′′, ⋯ )]2          (3) 

Bouc-Wen model has eight parameters, and the code 

of identification methods such as genetic algorithm and 

particle swarm optimization algorithm is cumbersome and 

complex. The iterative algorithm based on Matlab least 

squares method is used to automatically call the iterative 

algorithm using the test data, so that the test value and the 

simulation value are infinitely close, and the purpose of 

identifying all parameters is achieved. The identification 

flow chart is shown in Figure 6. 

Start

Build Bouc-Wen Model

Import test data

Select iterative algorithm

Set parameter initial value

Conforming to the judgement rules

End

Yes

No

 

Fig.6: Identification flow chart 

 

Table 1: Identification results of parameters [12] 

Current A α β c0 γ k0 n x0 

0 1.647 17.5 -889 50 1.4 111.7 1.02 -25.8 

0.25 1.626 19.3 -909 50.4 1.24 111.3 1 -25.8 

0.5 3.255 19.7 -1048 49.8 1.207 82.4 1.02 -25.6 

0.75 3.516 19 -1054 50 1.202 82.3 1 -25.6 

1 3.516 19.2 -1060 50 1.196 82.3 1 -25.6 

 

It can be seen from Table 1 that n and x0 are both 

approximate constant values, regardless of the test value or 

the theoretical value, so the average value of n is 1.01, x0 is 

-25.64 mm are taken as the initial values for the next 

parameter identification. Due to parameter A, β, γ is the 

adjustment coefficient of the hysteretic model. In the pursuit 

of the minimum sum of squares of errors, A, β, γ compared 

with α, c0 and k0 are easier to adjust. At the same time, it can 

be found in Table 1 that since the parameter value obtained 

after the first parameter estimation is used as the initial 

value of the next parameter estimation, there is an iterative 

relationship, so A, β, γ the value of k0 is less affected by the 

current, which is of more reference significance. Therefore, 

the parameter identification will be carried out again by 

using the gradually shrinking boundary method in 

combination with the data of the last three groups.  

Therefore, the next six parameters need to be identified, 

which reduces the difficulty of identification. Take the 

parameters identified when the first identification current is 

0.5 A as the initial value, and the identification results are 

shown in Table 2. 
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Table 2: Identification results for reducing the identification boundary range 

Current A α β c0 γ k0 

0 3.49 15.71 -1.02 33.78 1.24 75.04 

0.25 3.5 21.4 -1.31 46.08 1.25 68.13 

0.5 3.527 27.13 -1.207 49.5 1.207 65.87 

0.75 3.502 31.69 -1.232 56.5 1.232 70.87 

1 3.52 35.82 -1.25 53.6 1.25 61.65 

 

It can be seen from Table 2 that parameter A, β, γ the 

variation of k0 is small, and its average value can be used as 

the identified parameter of its model, A is 3507.8, β is -

1013.6 and γ is 1235.8. α and c0 change regularly with the 

change of current, so it can be considered that α and c0 have 

the following relationship with current: 

{
𝛼 = 𝛼1 + 𝛼2𝐼

𝑐0 = 𝑐1𝐼
2 + 𝑐2𝐼 + 𝑐3

                             

(4) 

 

IV. MODEL VALIDATION 

To verify whether the Bouc-Wen simulation model 

identified by the nonlinear least squares method can truly 

describe the damping characteristics of the 

magnetorheological damper, it is necessary to compare and 

analyze identification results into the simulation model. 

Substitute the above identification results into the 

simulation model, and first verify the consistency under any 

current with the same amplitude and frequency. The 

comparison diagram of displacement-damping force 

simulation test and speed-damping force simulation test is 

shown in Figure 7 and Figure 8. 

 

Fig.7: Simulation test at 0.4Hz and 10mm for 

displacement-damping force 

 

Fig.8: Simulation test at 0.4Hz and 10mm for Speed-

damping force 

 

It can be seen from Figure 7 and Figure 8 that the 

displacement-damping force simulation test diagram and 

the speed-damping force simulation test diagram are in 

good agreement, which verifies the correctness of the 

parameter identification results. To verify the correctness 
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and generality of the least squares method based on the 

Simulink identification toolbox, data of different amplitude 

and frequency are randomly selected for verification, as 

shown in Figure 9 and Figure 10. 

 

Fig.9: Simulation test at 0.7Hz and 7.5mm for 

displacement-damping force 

 

Fig.10: Simulation test at 0.7Hz and 7.5mm for Speed-

damping force 

 

It can be seen from Figure 9 and Figure 10 that 

selecting data of 0.5 A, frequency of 0.7 Hz and amplitude 

of 7.5 mm for verification can also better reflect the 

correctness of the identification results and the universality 

of the dynamic model. 

 

V. CONCLUSION 

 The Bouc-Wen model's identified parameters can not 

only be well consistent with the data used in the 

identification, but they can also better reflect the damper's 

dynamic properties at various amplitude frequencies. The 

model's recognized parameters have a clear physical 

meaning, which is useful for the stabilizer's control task in 

the following stage. The algorithm is effective and simple 

to use when applied using the nonlinear least squares 

method. It can also be used universally for other damper 

model parameter identification. 
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