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Abstract— In this research, the breaker index equations are formulated 

using the kinematic free surface boundary condition. By substituting the 

potential velocity equation for the solution of Laplace's equation in this 

equation, it is obtained the wave amplitude function equation. From the 

wave amplitude function equation two breaker indices are extracted, 

they are the breaker length index which is the ratio between the breaker 

height and the breaker length; and the breaker depth index which is the 

ratio between the breaker height and the breaker depth. The next 

breaker index, which is a ratio between breaker depth and breaker 

length, is obtained from the wave number conservation law. Consistency 

testing of the three breaker index equations obtained shows that there is 

consistency in the three equations. Consistency testing is done by using 

the connectivity equation, where a breaker index is the product of the 

multiplication of the other two breaker indexes. The breaker height 

index, which is the ratio between the breaker height and the deep water 

wave height, is obtained by substituting the breaker length index in the 

energy conservation equation. Thus the breaker height equation is 

obtained which works a function of the breaker length at the breaking 

point. With the availability of the four breaker indexes, the breaking 

parameter can be calculated easily. 

 
I. INTRODUCTION 

The breaking parameter is the wave characteristics at the 

time of breaking. There are three breaking parameters, 

namely the breaking wave height or also known as the 

breaker height, the water depth at the breaking point 

which is called the breaker depth and the wavelength at the 

breaking point which is called the breaker length. Breaker 

index is a ratio between breaking parameters. The breaker 

depth index is the ratio between the breaker height and the 

breaker depth, the breaker length index is the ratio between 

the breaker height and the breaker length. There is a 

breaker index which is rarely researched or used, namely 

the ratio between breaker depth and breaker length; this 

breaker index is hereinafter referred to as the breaker 

depth-length index. Breaker height index is the ratio 

between breaking wave height and deep water wave 

height.  

Several explicit equations to the breaker depth index were 

put forward by, among others, McCowan (1894), Weggel 

(1972), Galvin (1969), Collins and Weir (1969), Madsen 

(1976) and Smith and Krauss (1989). 

There is a critical wave steepness criterion, which is the 

wave steepness before breaking which is the ratio between 

the wave height and wavelength before breaking. This 

criterion can also be considered as a breaker length index. 

Two researchers who put forward the criterion of critical 
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wave steepness are Michell (1894) and Toffoli et al 

(2010). The breaker length index is in the form of an 

implicit equation which is a function of another breaker 

index, namely the Mieche equation (1944). This equation 

connects the breaker length index with the breaker depth-

length index. Many researchers have developed the 

breaker length index by modifying the Mieche equation 

(1944), including Battjes and Jansen (1978), Ostendorf and 

Madsen (1979) and Rattanapittikon and Shibayama (2000). 

The various breaker index equations are formulated 

separately, where the breaker depth index is formulated 

only by examining the breaker depth index, the breaker 

length index is formulated only by examining the breaker 

length index, as well as the breaker height. There should 

be a relationship or connectivity between breaker indexes, 

where the value of one breaker index is related to the value 

of another breaker index. In the breaker index equations 

obtained in this study, an examination of the linkages 

between breaker indexes was carried out using the 

connectivity equation. As a result, it is found that there is 

connectivity between breaker indexes.  

 

II. THE VELOCITY POTENTIAL EQUATION 

The complete velocity potential solution of the Laplace 

equation (Dean (1991)) using the variable separation 

method is: 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺 (cos 𝑘𝑥 + sin 𝑘𝑥) cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 

                                                                                         (1)                                                                            

Where 𝑥 is the horizontal axis, 𝑧 is vertical axis and 𝑡 is 

time, while ℎ is water depth. 𝐺, 𝑘 dan 𝜎 is called the wave 

constant, 𝐺 is the energy transmission rate, 𝑘 is wave 

number, 𝑘 =
2𝜋

𝐿
 where 𝐿 is a wavelength and 𝜎 =

2𝜋

𝑇
 is 

angular frequency while 𝑇 is for wave period. 

 

The three wave constants need to be determined by their 

value or equation. As shown in (1), the velocity potential 

consists of two components, namely the cos and the sin 

component. In both components there is a point 

where cos 𝑘𝑥 = sin 𝑘𝑥, these points are called 

characteristic points. Analysis of wave constants will be 

easier if done at characteristic points, where the constants 

obtained will satisfy both wave components. By using only 

components cos 𝑘𝑥 then the velocity potential equation 

becomes, 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺 cos 𝑘𝑥 cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡                …(2) 

 

Note that the G in (2) has a double value. 

 

III. THE WAVE AMPLITUDE FUNCTION 

EQUATION 

The wave amplitude function is the relationship between 

wave amplitude and other wave constants. This equation is 

obtained by substituting the velocity potential for the 

kinematic free surface boundary condition and the 

equation obtained is integrated with time t to obtain the 

elevation water surface equation. 

 

As a kinematic free surface boundary condition, a 

weighted kinematic free surface boundary condition from 

Hutahaean (2022) is used in the form, 

𝛾2
Ƌ𝜂

Ƌ𝑡
= 𝑤𝜂 − 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
                                                       …(3) 

𝛾2 is a coefficient that is greater than 1, but the value of 

this coefficient has no effect on the breaker index. 𝜂(𝑥, 𝑡) 

is the water surface elevation relative to the still water 

level, 𝑤𝜂 surface vertical water particle velocity 𝑢𝜂 surface 

horizontal water particle velocity. 

By using the velocity potential equation, 

𝑢(𝑥, 𝑧, 𝑡) = −
Ƌɸ

Ƌ𝑥
 

                  = 𝐺𝑘 sin 𝑘𝑥 cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡  

𝑢𝜂 = 𝐺𝑘 sin 𝑘𝑥 cosh 𝑘(ℎ + 𝜂) sin 𝜎𝑡  

𝑤(𝑥, 𝑧, 𝑡) = −
Ƌɸ

Ƌ𝑧
 

                  = −𝐺𝑘 cos 𝑘𝑥 sinh 𝑘(ℎ + 𝑧) sin 𝜎𝑡  

𝑤𝜂 = −𝐺𝑘 cos 𝑘𝑥 sinh 𝑘(ℎ + 𝜂) sin 𝜎𝑡  

 

Substitute these velocity equations into (3) and work on 

the characteristic points, 

Ƌ𝜂

Ƌ𝑡
= −

𝐺𝑘

𝛾2

 cosh 𝑘(ℎ + 𝜂) 

        (tanh 𝑘(ℎ + 𝜂) +  
Ƌ𝜂

Ƌ𝑥
) cos 𝑘𝑥 sin 𝜎𝑡  …….(4) 

 

As a periodic function, then 

𝐺𝑘 cosh 𝑘(ℎ + 𝜂) (tanh 𝑘(ℎ + 𝜂) +  
Ƌ𝜂

Ƌ𝑥
) 

                                                 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Then integration (4) can be completed by integrating the 

elements of sin 𝜎𝑡, and is obtained water surface elevation 

equation of, 

𝜂(𝑥, 𝑡) =
𝐺𝑘

𝜎𝛾2

 cosh 𝑘(ℎ + 𝜂) 

          (tanh 𝑘(ℎ + 𝜂) +  
Ƌ𝜂

Ƌ𝑥
) cos 𝑘𝑥 cos 𝜎𝑡 

Wave amplitude is defined as, 

𝐴 =
𝐺𝑘

𝜎𝛾2

 cosh 𝑘(ℎ + 𝜂) (tanh 𝑘(ℎ + 𝜂) + 
Ƌ𝜂

Ƌ𝑥
) 

Considering that G has a double value, then 

𝐴 =
𝐺𝑘

2𝜎𝛾2

 cosh 𝑘(ℎ + 𝜂) (tanh 𝑘(ℎ + 𝜂) + 
Ƌ𝜂

Ƌ𝑥
) 

𝐴 is the wave amplitude, the water surface elevation 

equation becomes, 

𝜂(𝑥, 𝑡) = 𝐴 cos 𝑘𝑥 sin 𝜎𝑡 

http://www.ijaers.com/
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At a characteristic point of space and time, 𝜂 =
𝐴

2
 dan 

Ƌ𝜂

Ƌ𝑥
=

−
𝑘𝐴

2
, wave amplitude function becomes 

 

𝐴 =
𝐺𝑘

2𝜎𝛾2

 cosh 𝑘 (ℎ +
𝐴

2
) (tanh 𝑘 (ℎ +

𝐴

2
) −

𝑘𝐴

2
) 

                                                                                ……(5) 

In the wave amplitude function there is an element of 

tanh 𝑘 (ℎ +
𝐴

2
) which has a constant value. The constant 

value of the function of tanh 𝑘 (ℎ +
𝐴

2
)  is reached at a 

large value of h, at ℎ = ℎ0, ℎ0 is the deep water depth 

where the influence of waves still reaches the bottom of 

the waters even though it is very small or close to zero. 

The constant value is, 

tanh 𝑘0 (ℎ0 +
𝐴0

2
) = 1 

Therefore,  in deep waters even at depths greater than ℎ0, 

the waves seem to move on water depth ℎ0, where   

𝑘0 (ℎ0 +
𝐴0

2
) = 𝜃𝜋 

𝜃 is the deep water coefficient whose value needs to be 

determined. However, based on the wave number 

conservation law discussed in section (6), this equation 

applies at all depths, so it can be written in general as: 

𝑘 (ℎ +
𝐴

2
) = 𝜃𝜋                                                        ……(6) 

The determination of the value 𝜃 is to use tanh 𝜃𝜋 = 1. 

However, this criterion is very dependent on the level of 

accuracy used, as shown in Table (1). 

 

Table (1) Value tanh 𝜃𝜋 

𝜃 

tanh 𝜃𝜋 

(5) (6) (7) 

1.95 0.99999 0.999990 0.9999905 

2 0.99999 0.999993 0.9999930 

2.05 0.99999 0.999995 0.9999949 

2.1 1 0.999996 0.9999963 

2.4 1 0.999999 0.9999994 

2.45 1 1.000000 0.9999996 

2.75 1 1.000000 0.9999999 

2.8 1 1.000000 1.0000000 

 

In  Table (1),  (5), (6) and (7) is the number of digits after 

the decimal point.  

- With an accuracy of 5 decimal places, it is found that 

tanh 𝜃𝜋 = 1 at 𝜃 = 2.1  

- With an accuracy of 6 decimal places, it is found that 

tanh 𝜃𝜋 = 1 at 𝜃 = 2.45  

- With an accuracy of 7 decimal places, it is found that 

tanh 𝜃𝜋 = 1 at 𝜃 = 2.80  

Due to this condition, the value of 𝜃 cannot be determined 

only by using the criterion of tanh 𝜃𝜋 = 1, thus additional 

criteria are needed. The more precise determination of 

value  𝜃 will be done in section 9. 

 

IV. Equation of  Breaker Length Index  
𝐻𝑏

𝐿𝑏
.  

In (5) there is a breaking characteristic, when 

tanh 𝑘 (ℎ +
𝐴

2
) −

𝑘𝐴

2
= 0                                         …….(7) 

In this condition the wave amplitude function is zero. In 

(7) substituted (6) in the 1st term as well 𝑘 =
2𝜋

𝐿
 dan 𝐴 =

𝐻

2
 

in the second term it is obtained, breaker length index of  
𝐻𝑏

𝐿𝑏
=

2 tanh 𝜃𝜋

𝜋
                                                              …..(8) 

 

V. Equation of  Breaker Depth Index  
𝐻𝑏

ℎ𝑏
.  

It is defined as, 

 tanh 𝑘 (ℎ +
𝐴

2
) = 𝛽𝑘 (ℎ +

𝐴

2
) 

An equation is obtained as,  

𝛽 − (1 − 𝛽)
𝐻

4ℎ
= 0  

By using (6) thus, 

𝛽 =
tanh 𝜃𝜋

𝜃𝜋
 

With this equation,  the breaking equation becomes, 
𝐻𝑏

ℎ𝑏
=

4 tanh 𝜃𝜋

𝜃𝜋−tanh 𝜃𝜋
                                                         ……(9) 

 

VI. Equation for  
𝒉𝒃

𝑳𝒃
 

The equation for  
ℎ𝑏

𝐿𝑏
 is formulated by using the 

conservation equation of the wave number.  

In solving the Laplace equation with the variable 

separation method, the velocity potential is considered to 

be a multiplication of 3 functions (Dean (1991)), that is: 

ɸ(𝑥, 𝑧, 𝑡) = 𝑋(𝑥)𝑍(𝑧)𝑇(𝑡) 

where 𝑋(𝑥) is only the function of 𝑥, 𝑍(𝑧) is only the 

function of 𝑧 and 𝑇(𝑡) is only for the 𝑡 time. In (1), which 

is 𝑍(𝑧): 

𝑍(𝑧) = cosh 𝑘(ℎ + 𝑧) 

where ℎ is for water depth. As the function is only of 𝑧 

then at sloping bottom where water depth ℎ = ℎ(𝑥), also 

for 𝑘 = 𝑘(𝑥),  

Ƌ𝑍(𝑧)

Ƌ𝑥
= sinh 𝑘(ℎ + 𝑧)

Ƌ𝑘(ℎ + 𝑧)

Ƌ𝑥
= 0 

In this equation the value is zero: 

Ƌ𝑘(ℎ + 𝑧)

Ƌ𝑥
= 0 

If this equation is worked on 𝑧 =
𝐴

2
 thus, 

Ƌ𝑘 (ℎ +
𝐴
2

)

Ƌ𝑥
= 0 
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Thus, 

𝑘 (ℎ +
𝐴

2
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

By using (6), the equation for the conservation of the 

waave number is obtained, 

𝑘 (ℎ +
𝐴

2
) = 𝜃𝜋 

The equation for the conservation of the wave number 

applies to all water depths, including the breaker depth, 

therefore it applies to the breaking point, 

𝑘𝑏 (ℎ𝑏 +
𝐴𝑏

2
) = 𝜃𝜋 

Substitute 𝑘𝑏 =
2𝜋

𝐿𝑏
 and 𝐴𝑏 =

𝐻𝑏

2
 ,   

ℎ𝑏

𝐿𝑏

=
𝜃

2
−

𝐻𝑏

4𝐿𝑏

 

Substitute 
𝐻𝑏

𝐿𝑏
  with (8), 

ℎ𝑏

𝐿𝑏
=

𝜃

2
−

tanh 𝜃𝜋

2 𝜋
                                                        …..(10) 

 

VII. CONSISTENCY CHECKING 
𝐻𝑏

ℎ𝑏
, 

𝐻𝑏

𝐿𝑏
 DAN 

ℎ𝑏

𝐿𝑏
 

The consistency test is proof that a breaker index is the 

product of the multiplication of the other two breaker 

indexes. The consistency test is done using the 

connectivity equation,  
𝐻𝑏

𝐿𝑏
=

𝐻𝑏

ℎ𝑏

ℎ𝑏

𝐿𝑏
                                                               ……(11) 

This equation states that the multiplication between the 

equations 
𝐻𝑏

ℎ𝑏
 and 

ℎ𝑏

𝐿𝑏
   must create an equation of  

𝐻𝑏

𝐿𝑏
  which 

is the same as (8).  

 

Substitute 
𝐻𝑏

ℎ𝑏
 with (9) and 

ℎ𝑏

𝐿𝑏
 with (10), 

𝐻𝑏

𝐿𝑏

== (
4 tanh 𝜃𝜋

𝜃𝜋 − tanh 𝜃𝜋
) (

𝜃

2
−

tanh 𝜃𝜋

2 𝜋
) 

It is obtained, 

𝐻𝑏

𝐿𝑏

=
2 tanh 𝜃𝜋

𝜋
 

The equation is the same as (8). Therefore, the equations 

of 
𝐻𝑏

ℎ𝑏
, 

𝐻𝑏

𝐿𝑏
 and 

ℎ𝑏

𝐿𝑏
 meet the consistency requirements. This 

consistency character also shows that the value of one 

breaker index is determined by another breaker index, or in 

other words there is interdependence between breaker 

indexes. Therefore, the formulation of the three breaker 

indexes should be done simultaneously so that consistency 

can be checked and there is connectivity between the 

breaker indexes.  

 

VIII. Breaker Height Index 
𝑯𝒃

𝑯𝟎
. 

The wave energy at one wavelength for a sinusoidal wave 

is  

𝐸 = 𝑐𝐸𝜌𝑔𝐻2𝐿 (m) 

𝑐𝐸 is a coefficient, which in linear wave theory 𝑐𝐸 =
1

8
 

(Dean (1991)). ρ is water mass density, 𝑔 is gravitational 

force,  𝐻 is wave height and 𝐿 is wavelength. 

 

Based on the law of conservation of energy, the wave 

energy at the breaker point is the same as the wave energy 

in deep water, 

𝑐𝐸𝜌𝑔𝐻𝑏
2𝐿𝑏 = 𝑐𝐸𝜌𝑔𝐻0

2𝐿0 

The same elements cancel each other out, 

𝐻𝑏
2𝐿𝑏 = 𝐻0

2𝐿0 

Substituting the breaker length index (8), we get the 

breaker height equation associated with the breaker length 

index value 

𝐻𝑏
3 =

2 tanh 𝜃𝜋

𝜋
 𝐻0

2𝐿0                                                 …..(12) 

Hutahaean (2022) obtained the deep water wave number 

is, 

𝑘0 =
𝛾3

(𝛾2 +
𝛾3

2
)

𝐻0

2

 

𝛾2 and 𝛾3 are coeficients where 𝛾2 = 1.4 and 𝛾3 = 1.8.  

By this wave number, the deep water wavelength is: 

𝐿0 =
𝜋(𝛾2+

𝛾3
2

)𝐻0

𝛾3
  

Substituting  𝐿0  to (12), it is obtained 

𝐻𝑏

𝐻0
= (

2 tanh(𝜃𝜋)(𝛾2+
𝛾3
2

)

𝛾3
)

1
3⁄

                                       ….(13) 

 

IX. DETERMINATION OF VALUE OF 𝜽 

The calculation results for 
𝐻𝑏

ℎ𝑏
, 

𝐻𝑏

𝐿𝑏
, 

ℎ𝑏

𝐿𝑏
 and 

𝐻𝑏

𝐻0
 for some deep 

water depth coefficient values  𝜃 is presented in Table (2) 

below. To save space, only calculation results are 

presented where there is a match between 
𝐻𝑏

ℎ𝑏
 with previous 

research. 

Table (2) the value θ which results  
𝐻𝑏

ℎ𝑏
 that is in a line with 

previous research 

𝜃 𝐻𝑏

𝐿𝑏

 
𝐻𝑏

ℎ𝑏

 
ℎ𝑏

𝐿𝑏

 
𝐻𝑏

𝐻0

 

1.95 0.637 0.78 0.816 1.367 

2.1 0.637 0.715 0.891 1.367 

2.6 0.637 0.56 1.141 1.367 

 

There is a match between the values of  
𝐻𝑏

ℎ𝑏
   from several 

previous studies, where the match can be found in the 

value of 𝜃 that varies. 

  

- In 𝜃 = 1.95, it is obtained  
𝐻𝑏

ℎ𝑏
= 0.78, which is in a line 

with: 

   a. Mc Cowan (1894) : 
𝐻𝑏

ℎ𝑏
= 0.78 
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   b. Weggel (1972) :  

   
𝐻𝑏

ℎ𝑏
=

𝑔𝑇21.56
[1+𝑒𝑥𝑝(−19.5𝑚)]⁄

𝑔𝑇2+ℎ𝑏43.75[1−𝑒𝑥𝑝(−19𝑚)]
 

   𝑚 is bottom slope, for 𝑚 = 0 ; 
𝐻𝑏

ℎ𝑏
= 0.78 

- In 𝜃 = 2.10, it is obtained 
𝐻𝑏

ℎ𝑏
= 0.715, which is in a line 

with: 

   a. Galvin (1969) :  
𝐻𝑏

ℎ𝑏
=

1

1.4−6.85 𝑚
    ; for bottom slope 

𝑚 ≤ 0.07  

       In 𝑚 = 0,  
𝐻𝑏

ℎ𝑏
=

1

1.4
= 0.714 

   b. Collins and Weir (1969) : 
𝐻𝑏

ℎ𝑏
= 0.72 + 5.6 𝑚 

        In 𝑚 = 0,  
𝐻𝑏

ℎ𝑏
= 0.72 

   c.  Madsen (1976) : 
𝐻𝑏

ℎ𝑏
= 0.72(1 + 6.4𝑚) 

        In 𝑚 = 0, 
𝐻𝑏

ℎ𝑏
= 0.72 

- In 𝜃 = 2.60, it is obtained 
𝐻𝑏

ℎ𝑏
= 0.56, that matches with 

Smith and Krauss (1989)  

   
𝐻𝑏

ℎ𝑏
=

1.12

1+𝑒𝑥𝑝(−60𝑚)
− 5(1 − exp (−43𝑚))

𝐻0

𝐿0
 

    

   In 𝑚 = 0,  
𝐻𝑏

ℎ𝑏
= 0.56  

To determine the 𝜃 the value of 
ℎ𝑏

𝐿𝑏
  is examined where  

ℎ𝑏

𝐿𝑏
< 1 shows that the waterdepth is smaller than 

wavelength. This condition causes water depth unable to 

support wave hydrodynamics resulting in breaking. In 𝜃 =

2.6, the value of 
ℎ𝑏

𝐿𝑏
> 1, it can be assumed that breaking 

will not occur in that condition.  

 

Then, to select between 𝜃 = 2.1 and 𝜃 = 1.95 where both 

result in 
ℎ𝑏

𝐿𝑏
< 1, a review will be carried out based on deep 

water depth criteria by using the wave number 

conservation equation in deep waters. Equation (6) is done 

in deep water, 

 𝑘0 (ℎ0 +
𝐴0

2
) = 𝜃𝜋 

Substitute 𝑘 =
2𝜋

𝐿
, and the equation can be expressed as 

ℎ0

𝐿0

=
𝜃

2
−

𝐻0

4𝐿0

 

ℎ0 in this case is the transitional depth between shallow 

water and deep water, where the water depth is smaller 

than ℎ0 is shallow water while the water depth is greater 

than ℎ0 belongs to deep water. At the depth of the 

transition,  
ℎ0

𝐿0
 should be greater than one or at least 1. This 

suggests that 𝜃 must be greater than 2. From this, it can be 

concluded that the breaker index that corresponds to Table 

(2) is the breaker index formulated by 𝜃 = 2.1.  

Breaker depth index in 𝜃 = 2.1 produces a breaker depth 

index that is in accordance with the results of research 

from Galvin (1969), Collins and Weir (1969) and Madsen 

(1976). In addition, the values in Table (1) show that 

tanh 𝜃𝜋 untuk 𝜃 = 2.1 has reached 1 in the accuracy of 5 

decimal places while in 𝜃 = 1.95 it has not reached 1. 

Both of these strengthen the conclusion that the 

appropriate value of the depth coefficient 𝜃 is 2.1, with the 

breaker index on Table (2).   

From the above discussion it can be seen that the breaker 

index is determined by the deep water coefficient 𝜃 which 

means that the breaker index is set by determining the deep 

water depth. Thus there is a possibility that the diversity of 

breaker index obtained from previous research is also 

caused by differences in determining deep water depth. 

It has been shown that there is a match between the 

breaker depth index obtained with the breaker depth index 

from previous studies. In the following section, the value 

of the breaker length index will be studied 
𝐻𝑏

𝐿𝑏
 where the 

value of  
𝐻𝑏

𝐿𝑏
 obtained is a constant for all 𝜃 that is 

𝐻𝑏

𝐿𝑏
=

0.637. This value is much larger than the critical wave 

steepness: 

a. Michell, J.H. (1894) : 
𝐻

𝐿
= 0.142  

b. Toffoli et al (2010) : 
𝐻

𝐿
= 0.170 

Then it is studied the critical wave steepness from Michell, 

J.H. and Toffoli et al for the associated breaker depth 

index values. By specifying the value of  
𝐻𝑏

𝐿𝑏
 then 𝜃 can be 

calculate with (8), with the value of 𝜃 obtained 
𝐻𝑏

ℎ𝑏
 using 

(9). The result for  
𝐻𝑏

𝐿𝑏
= 0.142 − 0.170 is shown in Table 

(3). 

Table (3) the value 𝜃 in some values of 

 
𝐻𝑏

𝐿𝑏
= 0.142 − 0.170 

𝐻𝑏

𝐿𝑏

 
𝜃 

 

𝐻𝑏

ℎ𝑏

 
tanh 𝜃𝜋

𝜃𝜋
 

0.142 0.072 233.951 0.98319 

0.146 0.074 220.914 0.98222 

0.150 0.076 208.905 0.98121 

0.154 0.079 197.819 0.98018 

0.158 0.081 187.565 0.97912 

0.162 0.083 178.060 0.97803 

0.166 0.085 169.234 0.97691 

0.170 0.087 161.023 0.97576 

 

In 
𝐻𝑏

𝐿𝑏
 from 0.142 to 0.170, it is obtained the value of 𝜃 

which is smal, as much as 0.072-0.087, with  
tanh 𝜃𝜋

𝜃𝜋
 ranges 
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from 0.98319 to 0.97576 closer to 1. The value of 
𝐻𝑏

ℎ𝑏
 

obtained is very large not found in the results of previous 

studies. The large value is due to tanh 𝜃𝜋 ≈ 𝜃𝜋.  

 

According to (6), in small amplitude it applies  𝜃𝜋 = 𝑘ℎ 

thus  
tanh 𝑘ℎ

𝑘ℎ
≈ 1, this is a shallow water long wave 

condition. From this condition it can be concluded that 

both Michell's (1894) and Toffoli et al's (2010) criteria are 

for long waves in shallow waters. 

 

a. Miche’s Equation Study. 

Miche (1944), create a breaker index equation connecting 

the two breaker indexes, that is 
𝐻𝑏

𝐿𝑏
= 0.142 tanh (

2𝜋ℎ𝑏

𝐿𝑏
)                                        …….(14) 

The equation connects two breaker indexes of 
𝐻𝑏

𝐿𝑏
 and 

ℎ𝑏

𝐿𝑏
.  

By determining the value of 
𝐻𝑏

𝐿𝑏
 thus the value of 

ℎ𝑏

𝐿𝑏
 can be 

calculated. After that, by using the connectivity equation, 
𝐻𝑏

ℎ𝑏
 can be calculated. The calculation results is shown in 

Table (4). 

Table (4) Calculation of the breaker index using the Miche 

equation. 

𝐻𝑏

𝐿𝑏

 
ℎ𝑏

𝐿𝑏

 
𝐻𝑏

ℎ𝑏

 

0.082 0.10483 0.78224 

0.099 0.13716 0.72179 

0.126 0.22428 0.5618 

0,142 1.15351 0.12397 

 

In Table (4) it can be seen that there is a match between 
𝐻𝑏

ℎ𝑏
 

and previous studies and in  
𝐻𝑏

𝐿𝑏
 maximum which is 0.142. 

It was obtained that the match is in the values of 
𝐻𝑏

𝐿𝑏
 and 

ℎ𝑏

𝐿𝑏
 

is very small, in which this is the condition of long wave in 

shallow water. 

Then, the Miche’s equation is modified to, 
𝐻𝑏

𝐿𝑏
= 0.637 tanh (

2𝜋ℎ𝑏

𝐿𝑏
)                                           …..(15) 

The calculation results where there are matches between 
𝐻𝑏

ℎ𝑏
 and previous studies are presented in Table (5). 

 

Table (5) Calculation of breaker index using (15). 

𝐻𝑏

𝐿𝑏

 
ℎ𝑏

𝐿𝑏

 
𝐻𝑏

ℎ𝑏

 

0.636955 0.815732 0.780839 

0.636980 0.880247 0.723638 

0.636995 0.990467 0.643126 

0.637000 1.153513 0.552226 

 

Table (5) indicates that there is conformity with Table (2) 

in the value of 
𝐻𝑏

𝐿𝑏
. 

ℎ𝑏

𝐿𝑏
 and also 

𝐻𝑏

ℎ𝑏
 . Then Miche's equation 

can be modified into an equation for short waves by using  
𝐻𝑏

𝐿𝑏
≈ 0.637 or in other words, 

𝐻𝑏

𝐿𝑏
≈ 0.637 is according to 

Miche's equation. 

  

X. CALCULATION RESULTS OF BREAKING 

PARAMETERS USING THE BREAKER INDEX 

In section 9, it was obtained 
𝐻𝑏

𝐿𝑏
= 0.637, 

𝐻𝑏

ℎ𝑏
= 0.715,  

ℎ𝑏

𝐿𝑏
= 0.891 and 

𝐻𝑏

𝐻0
= 1.367 in 𝜃 = 2.1. An example of 

calculating the breaking parameter with the breaker 

indexes for several deep water wave heights 𝐻0 is 

presented in Table (6). 

Table (6) The calculation of parameters breaking 

𝐻0 

(m) 

𝑇 

(sec) 

𝐻𝑏  

(m) 

𝐿𝑏 

(m) 

ℎ𝑏 

(m) 

1 4.61 1.37 2.15 1.91 

1.5 5.65 2.05 3.22 2.87 

2 6.53 2.73 4.3 3.83 

2.5 7.3 3.42 5.37 4.78 

3 7.99 4.1 6.44 5.74 

 

Wave period in Table (6) is obtained from the relation of 

wave period with wave height (Hutahaean (2022)), 

𝑇 = √8𝜋2(𝛾2+
𝛾3
2

)
2𝐻0

2

𝑔
                                                  …..(16) 

To get an overview of the conditions resulting from the 

calculation of the breaker parameter with the breaker index 

equation obtained, we will review the breaker height from 

the previous breaker height equations.  

The empirical breaker height index equation 
𝐻𝑏

𝐻0
 is quite a 

lot and can be divided into two groups, namely those that 

use the bottom slope as a parameter and those that do not 

use. In this study, the breaker depth index is used without a 

bottom slope as a parameter and or the bottom slope is 

given a value of zero. Researchers in this group include 

Komar and Gaughan (1972), Larson and Krauss (1989), 

Smith and Krauss (1990) and Gourlay (1992).  

Komar and Gaughan  (1972) :  

𝐻𝑏

𝐻0
= 0.56 (

𝐻0

𝐿0
)

−0.2

                                                ……(17) 

Larson and Kraus (1989 : 

 
𝐻𝑏

𝐻0
= 0.53 (

𝐻0

𝐿0
)

−0.24

                                             ……(18) 

Smith and Kraus (1990) : 

 
𝐻𝑏

𝐻0
= (0.34 + 2.47 𝑚) (

𝐻0

𝐿0
)

−0.30+0.88 𝑚

                 …..(19) 

𝑚 is the bottom slope, this research uses 𝑚 = 0 
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Gourlay (1992) : 
𝐻𝑏

𝐻0
= 0.478 (

𝐻0

𝐿0
)

−0.28

                      ....(20) 

 

From these equations, the deep water wave length is 

calculated using the dispersion equations of linear wave 

theory,  𝐿0 =
𝑔𝑇2

2𝜋
. 

The breaker height calculation results using the empirical 

breaker height index equations are presented in Table (6). 

Table (7) Breaker height from empirical equation. 

𝐻0 

(m) 

𝑇 

(sec) 

𝐻𝑏(𝑚) 

(17) (18) (19) (20) 

1 4.61 1.13 1.23 0.97 1.27 

1.5 5.65 1.69 1.84 1.46 1.91 

2 6.53 2.26 2.46 1.95 2.55 

2.5 7.3 2.82 3.07 2.43 3.19 

3 7.99 3.39 3.69 2.92 3.82 

Note : (17), (18), (19), (20) are the equation code number. 

 

Of the four breaker height index equations, (20) gives the 

largest and closest result to the breaker height in this study. 

Furthermore, the difference between the breaker height 

from this study and the breaker height from (20) was 

studied. The comparison results are presented in Table (8). 

Table (8) Comparison between breaker height and 

Gourlay’s breaker height 

𝐻0 

(m) 

𝑇 

(sec) 

𝐻𝑏  (m) 𝛿 

(%) (13) (20) 

1 4.61 1.37 1.27 7.24 

1.5 5.65 2.05 1.91 7.24 

2 6.53 2.73 2.55 7.24 

2.5 7.3 3.42 3.19 7.24 

3 7.99 4.1 3.82 7.24 

 

Note : 𝛿 = |
(13)−(20)

(20)
| 𝑥100 % 

 

In Table (8), the breaker height of the results of this study 

is greater than the breaker height of (20) with a constant 

difference of 7.24%. To bring the results (13) closer to 

(20), it can be done by reducing the value of 𝜃, when 𝜃 =

0.35, it is obtained 𝛿 = 0.44 %, but if  
𝐻𝑏

ℎ𝑏
= 10.7, it shows 

that the (20) is for long wave.  

 

XI. CONCLUSION 

The first conclusion from this study is that the Kinematic 

Free Surface Boundary Condition has breaking 

characteristics and the breaker index equation can be 

formulated. Meanwhile, in the wave number conservation 

equation there is a breaker index in the form of a ratio 

between breaker depth and breaker length. The breaker 

height equation can be obtained by substituting the breaker 

length index in the energy conservation equation. With this 

procedure the breaker index equations for short waves are 

obtained. 

From the results of the connectivity test on the resulting 

breaker index equations, it was found that there is a link 

between the breaker indexes. This also gives the 

conclusion that there is interaction between breaking 

parameters that the value of one breaking parameter 

depends on the value of another breaking parameter.  

Thus it can also be concluded that breaking wave research, 

both laboratory and analytical research cannot be done 

separately, it should be done simultaneously for all breaker 

indexes or all breaking parameters. 

Determining the deep water depth affects the breaking 

parameters, especially the breaker depth. Therefore it is 

estimated that the difference between the breaker depth 

index results of previous studies is due to differences in the 

determination of deep water depth. 
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