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Abstract— This research builds upon Hutahaean (2024a), focusing on 

time series water wave modeling, with substantial portions of this article 

derived from that prior study. Modifications were made to the calculation 

algorithm; specifically, vertical water particle velocity is now computed 

using the continuity equation, and water surface elevation is determined 

through kinematic free surface boundary conditions. While this revised 

algorithm enables the model to simulate wave breaking, it results in an 

excessively high breaker height and struggles to accurately simulate 

wave conditions post-breaking, particularly at large wave heights. To 

address these challenges, the kinetic energy conservation equation was 

integrated into the model. This addition facilitated the creation of a water 

surface elevation equation through the superposition of kinematic free 

surface boundary conditions and the kinetic energy conservation 

equation. This integration yields an equation that maintains a balance 

between changes in potential energy and changes in kinetic energy, 

enhancing the model’s capability to simulate both the shoaling-breaking 

process and subsequent wave conditions in shallow waters more 

effectively. 

 
I. INTRODUCTION 

Time series water wave modeling continues to evolve, 

particularly due to challenges in accurately modeling 

complex phenomena such as wave diffraction at breakwater 

gaps. Traditional methods based on velocity potential 

theory often fall short in these areas. A more robust 

approach is the use of the Boussinesq equation, which has 

been significantly developed by researchers such as 

Boussinesq, J. (1871), Dingermans, M.W. (1997), Hamm, 

L., Madsen, P.A., Peregrine, D.H. (1993), Johnson, R.S. 

(1997), Kirby, J.T. (2003), and Peregrine, D.H. (1967, 

1972), among others. 

The conventional time series water wave model primarily 

comprises two equations: the water surface elevation 

equation and the horizontal water particle velocity equation. 

The former is formulated by integrating the continuity 

equation—taking into account both water depth and vertical 

surface particle velocity—and applying the Free Surface 

Boundary Condition. This model is adept at representing 

shoaling but falls short in simulating wave breaking and 

post-breaking conditions in shallow waters. While some 

advancements have been made, as demonstrated by 

Hutahaean, S. Achiari H. (2017) and Hutahaean S. (2019), 

the ability to reliably simulate post-breaking conditions 

remains inconsistent, with some datasets accurately 

modeled and others not. 

Building on this knowledge, recent research by Hutahaean 

(2024b) has made significant strides. Utilizing velocity 

potential theory, this study identified that breaking 

characteristics are prominent in the Kinematic Free Surface 

Boundary Condition. Leveraging this insight, a new time 

series water wave model has been developed, incorporating 

the Kinematic Free Surface Boundary Condition for 

calculating water surface elevations. This model also 

utilizes the continuity equation to determine vertical water 

particle velocities.  
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The current model successfully simulates shoaling and 

breaking but tends to overestimate the height of breaking 

waves and fails to accurately model wave behavior as it 

progresses into very shallow waters. One significant 

limitation identified is within the Kinematic Free Surface 

Boundary Condition, which accounts for changes in 

potential energy due to variations in water surface elevation 

without a corresponding adjustment for kinetic energy. This 

oversight results in an energy imbalance, as there's no 

accounted source of energy to facilitate the observed 

changes in potential energy. 

To rectify this issue, the model has been refined by 

integrating the Kinematic Free Surface Boundary Condition 

with a conservation of kinetic energy equation. This 

integration ensures a balanced accounting of energy 

changes, which enhances the accuracy of the water surface 

elevation predictions. 

Additionally, modifications have been made to the Euler 

momentum conservation equation, as detailed in Hutahaean 

(2024a). The updated Euler Momentum Conservation 

Equation now strictly enforces that horizontal velocity 

changes occur only on the horizontal axis and vertical 

velocity changes only on the vertical axis. 

With these critical modifications, the enhanced time series 

model now more accurately simulates wave breaking, 

effectively extending its predictive capabilities to shallow 

waters near the coast.  

 

II. WEIGHTED TAYLOR SERIES  

In this paper, we adopt the 𝑥 − 𝑧 coordinate system, 

where the 𝑥 -axis represents the horizontal axis and the 𝑧 -

axis denotes the vertical axis. 

A weighted Taylor series is a truncated Taylor series limited 

to first-order terms, with the influence of higher-order terms 

encapsulated in coefficients known as weighting 

coefficients. 

 

For a function of two variables 𝑓 = 𝑓(𝑥  , 𝑡) 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 

𝑓(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
                   ….(1) 

 

𝛾𝑡,2 and 𝛾𝑥 are weighting coefficients. 

For function  𝑓 = 𝑓(𝑥, 𝑧, 𝑡) the weighted Taylor series is 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡)

= 𝑓(𝑥, 𝑧, 𝑡) +  𝛾𝑡,3𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                            +𝛾𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑧
           ...(2) 

𝛾𝑡,3,  𝛾𝑥  and 𝛾𝑧 are weighting coeffcients. There is no 

difference between 𝛾𝑥 in 𝑓(𝑥, 𝑡) and 𝛾𝑥 in 𝑓(𝑥, 𝑧, 𝑡). The 

basic values of these weighting coefficients are, 𝛾𝑡,2 = 2, 

𝛾𝑡,3 = 3, 𝛾𝑥 = 1 and 𝛾𝑧 = 1. 

 

The updated weighting coefficient values are presented in 

Table (1), wherein these coefficients are dependent on the 

optimization coefficient 𝜀 . A larger 𝜀 corresponds to a 

greater influence of higher-order Taylor series terms. The 

methodology for computing these weighting coefficients is 

detailed in Hutahaean (2023). However, the precision of the 

weighting coefficients listed in Table (1) surpasses that of 

Hutahaean (2023).  

In this particular time series model, the selection of 

weighting coefficients hinges on the wave amplitude. 

Specifically, a higher wave amplitude corresponds to a 

larger 𝜀 , falling within the range of 0.15 ≤ 𝜀 ≤ 0.35.  

 

Table (1) Weighting coefficients. 

𝜀 𝛾𝑡,2 𝛾𝑡,3 𝛾𝑥 𝛾𝑧 

0.010 1.999797 3.004905 0.998792 1.011458 

0.012 1.999707 3.007157 0.998257 1.016713 

0.014 1.999600 3.009870 0.997625 1.023049 

0.016 1.999477 3.013062 0.996894 1.030512 

0.018 1.999336 3.016751 0.996064 1.039152 

0.020 1.999178 3.020955 0.995135 1.049022 

0.022 1.999002 3.025692 0.994107 1.060178 

0.024 1.998809 3.030982 0.992979 1.072679 

0.026 1.998599 3.036843 0.991751 1.086589 

0.028 1.998370 3.043296 0.990422 1.101976 

0.030 1.998124 3.050358 0.988994 1.118910 

0.032 1.997859 3.058049 0.987464 1.137468 

0.034 1.997576 3.066390 0.985834 1.157729 

0.036 1.997275 3.075398 0.984104 1.179778 

0.038 1.996954 3.085094 0.982272 1.203703 

0.040 1.996615 3.095495 0.980339 1.229598 

 

With the weighted Taylor series, the kinematic free surface 

boundary condition becomes, 

𝑤𝜂 = 𝛾𝑡,2
Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
                         ……………..(3) 

𝑤𝜂 = vertical surface water particle velocity 

𝑢𝜂 = horizontal surface water particle velocity 

𝜂(𝑥, 𝑡), water surface elevation equation. 

 

Meanwhile, the total acceleration of horizontal and vertical 

water particles is, 

𝐷𝑢

𝑑𝑡
= 𝛾𝑡,3

Ƌ𝑢

Ƌ𝑡
+

𝛾𝑥

2

Ƌ𝑢𝑢

Ƌ𝑥
+ 𝛾𝑧𝑤

Ƌ𝑢

Ƌ𝑧
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𝐷𝑤

𝑑𝑡
= 𝛾𝑡,3

Ƌ𝑤

Ƌ𝑡
+ 𝛾𝑥𝑢

Ƌ𝑤

Ƌ𝑥
+

𝛾𝑧

2

Ƌ𝑤𝑤

Ƌ𝑧
 

 

III. DEPTH AVERAGE VELOCITY 

The model is formulated using depth average velocity as 

its variable, where according to Dean (1991), the horizontal 

depth average velocity is, 

𝑈 =
1

𝛽𝑢𝐷
∫ 𝑢

𝜂

−ℎ
 𝑑𝑧                                …………(4) 

𝑈 = horizontal depth average velocity 

𝛽𝑢= the horizontal velocity integration coefficient 

𝐷 = ℎ + 𝜂 

𝐷 = total water depth 

ℎ = water depth towards still water level (Fig. 1) 

𝜂 = surface water level towards still water level (Fig.1) 

 

 

 

 

 

 

 

 

 

 

 

Fig (1). Depth average velocity concept 

 

Equation (4) was initially formulated to model very long 

waves, such as tidal waves, using a horizontal velocity 

integration coefficient 𝛽𝑢 = 1. In this study, the integration 

coefficient is calculated by defining the depth-averaged 

velocity as the velocity at a depth 𝑧 = 𝑧0 below the still 

water level. Here, 𝑧0 is negative, as shown in Figure 1. 

Consequently, 𝑧0 is defined in terms of the water depth ℎ , 

specifically 𝑧0 = −𝜉ℎ, where 0 < 𝜉 < 1.     

 

The velocity potential equation solution of Laplace equation 

is 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺(cos 𝑘𝑥 + sin 𝑘𝑥) cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 

𝐺 is wave constant 

𝑘 is wave number 

𝜎 is angular frequency, 𝜎 =
2𝜋

𝑇
 

𝑇 is wave period. 

 

a. Coefficients of  Integration 𝛽𝑢 and 𝛽𝑤  

Horizontal water particle velocity from velocity potential is 

𝑢(𝑥, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑥
= −𝐺𝑘(− sin 𝑘𝑥 + cos 𝑘𝑥) cosh 𝑘(ℎ

+ 𝑧) sin 𝜎𝑡 

Vertical water particle velocity is 

𝑤(𝑥, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑧
= −𝐺𝑘(cos 𝑘𝑥 + sin 𝑘𝑥) sinh 𝑘(ℎ

+ 𝑧) sin 𝜎𝑡 

Based on the definition of the horizontal depth average 

velocity, 

𝑈 = 𝑢(𝑥, −𝜉ℎ, 𝑡) = −𝐺𝑘(− sin 𝑘𝑥 + cos 𝑘𝑥) cosh 𝑘ℎ(1

− 𝜉) sin 𝜎𝑡 

Thus, 

𝑢

𝑈
=

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ (1 − 𝜉)
 

Equation (4) is written into the equation for 𝛽𝑢, 

𝛽𝑢 =
1

𝑈𝐷
∫ 𝑢

𝜂

−ℎ

𝑑𝑧 

𝛽𝑢 =
1

𝐷 cosh 𝑘ℎ(1 − 𝜉)
∫ cosh 𝑘(ℎ + 𝑧)

𝜂

−ℎ

 𝑑𝑧 

𝛽𝑢 =
sinh 𝑘(ℎ + 𝜂)

𝑘𝐷 cosh 𝑘ℎ(1 − 𝜉)
 

𝛽𝑢 =
sinh 𝑘𝐷

𝑘𝐷 cosh 𝑘ℎ(1 − 𝜉)
 

 

In deep water, 𝑘𝐷 ≈ 𝑘ℎ = 𝜃𝜋, 𝜃 is referred to as the deep 

water coefficient where tanh 𝜃𝜋 = 1,  and 𝜃 = 1.70 is used 

in this research 

𝛽𝑢 =
sinh 𝜃𝜋

𝜃𝜋 cosh 𝜃𝜋(1−𝜉)
                                         …..(5) 

Although this equation is formulated in deep water, it also 

applies to shallow water, given the law of conservation of 

wave number (Hutahaean (2024b)) , where   

Ƌ𝑘(ℎ + 𝑧)

Ƌ𝑥
= 0 

Thereby 𝑘(ℎ + 𝑧) is constant, unchanged against changes 

in water depth, as well as  𝑘(ℎ + 𝜂) is constant .  

 

The integration coefficient of the vertical depth average 

velocity 𝛽𝑤 ,  is formulated in the same way, 

𝛽𝑤 =
1

𝐷𝑊
∫ 𝑤

𝜂

−ℎ

 𝑑𝑧 

𝛽𝑤 =
1

𝐷 sinh 𝑘ℎ(1 − 𝜉)
∫ sinh 𝑘(ℎ + 𝑧)

𝜂

−ℎ

𝑑𝑧 

𝛽𝑤 =
cosh 𝑘𝐷 − 1

𝑘𝐷 sinh 𝑘ℎ(1 − 𝜉)
 

𝛽𝑤 =
cosh 𝜃𝜋−1

𝜃𝜋 sinh 𝜃𝜋(1−𝜉)
                                        ……(6) 

 

b. Transformation coefficients 

In the derivation of equations for water surface elevation 

and water particle velocity, variables for surface water 

particle velocities, namely horizontal velocity 𝑢𝜂 and 

vertical velocity 𝑤𝜂, are introduced. To apply these 

equations more broadly, it is necessary to transform these 

surface velocities into depth-averaged velocities.  

Using the definition of the depth average velocity, 

Still water level 

𝑈 = 𝑢(𝑥, 𝑧𝑜 , 𝑡) 
ℎ 

𝑧0 

𝜂 𝑧 

x 

Sea bed 
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𝛼𝑢𝜂 =
𝑢𝜂

𝑈
=

cosh 𝑘(ℎ + 𝜂)

cosh 𝑘ℎ(1 − 𝜉)
=

cosh 𝜃𝜋

cosh 𝜃𝜋(1 − 𝜉)
 

Or 

𝑢𝜂 = 𝛼𝑢𝜂𝑈 

Where the transformation coefficient 𝛼𝑢𝜂 is, 

𝛼𝑢𝜂 =
cosh 𝜃𝜋

cosh 𝜃𝜋(1−𝜉)
                                        ……..(7) 

Since 𝑢𝜂𝑢𝜂  and 𝑢𝜂𝑢𝜂𝑢𝜂 is derived from 𝑢𝜂 Thus its 

distribution over space and time is the same as  𝑢𝜂. 

Therefore, its transformation coefficient is the same as the 

transformation coefficient of  𝑢𝜂. 

𝑢𝜂𝑢𝜂 = 𝛼𝑢𝜂𝑈𝑈 

𝑢𝜂𝑢𝜂𝑢𝜂 = 𝛼𝑢𝜂𝑈𝑈𝑈 

 

The vertical velocity transformation coefficient is 

𝛼𝑤𝜂 =
𝑤𝜂

𝑊
=

sinh 𝜃𝜋

sinh 𝜃𝜋(1−𝜉)
                            ………(8)  

A relationship is obtained, 

𝑤𝜂 = 𝛼𝑤𝜂𝑊 

𝑤𝜂𝑤𝜂 = 𝛼𝑤𝜂𝑊𝑊 

𝑤𝜂𝑤𝜂𝑤𝜂 = 𝛼𝑤𝜂𝑊𝑊𝑊 

 

In this study 𝜃 = 1.70, 𝜉 = 0.32, are used, with 

𝛽𝑢 = 1.033, 𝛼𝑢𝜂 = 5.52, 𝛼𝑤𝜂 = 5.53 

The effect of 𝜃 value is that the larger the 𝜃 value, the deeper 

the breaker depth and vice versa, the smaller the 𝜃 value, 

the smaller the breaker depth, but has no effect on the 

breaker height value. 

  

IV. THE CONSERVATION EQUATIONS  

4.1.Weighted continuity equation.  

The continuity equation is formulated using the weighted 

Taylor series and by working on the conservation of mass 

principle,, 

𝛾𝑥
Ƌ𝑢

Ƌ𝑥
+ 𝛾𝑧

Ƌ𝑤

Ƌ𝑧
= 0                                          ……(9) 

This equation is formulated under the condition that 

horizontal particle velocity only changed on the horizontal 

axis, as well as vertical particle velocity only changes on the 

vertical axis. 

  

4.2. Kinetic Energy Conservation Equation  

The kinetic energy conservation equation is formulated by 

reviewing the inflow and outflow of kinetic energy in a 

control volume. In the moving fluid mass contained kinetic 

energy Thus in the flow of the fluid mass there is also a flow 

of kinetic energy. The horizontal kinetic energy flow is 

𝑢(𝜌𝐸𝑘𝑥) and the vertical kinetic energy flow is 𝑤(𝜌𝐸𝑘𝑧), 

where the kinetic energy on the horizontal axis is 𝐸𝑘𝑥 =
𝑢2

2𝑔
 while the kinetic energy on the vertical axis is 𝐸𝑘𝑧 =

𝑤2

2𝑔
, 

𝜌 is the mass density of water. To formulate the kinetic 

energy conservation equation, the control volume in Fig (2) 

is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (2). Control volume. 

 

a. Space Averaging 

The velocity distribution on the sides of the control volume 

is not uniform, so an average velocity that represents the 

flow velocity on each side is required. 

Defined as 

𝑓(𝑥, 𝑧, 𝑡) = 𝑢(𝜌𝐸𝑘𝑥) 

ℎ(𝑥, 𝑧, 𝑡) = 𝑤(𝜌𝐸𝑘𝑧) 

The horizontal kinetic energy input to the control volume 

through side 123̅̅ ̅̅ ̅ ̅ at a time 𝑡 = 𝑡,  is   

𝑓1 = 𝑓 (𝑥 −
𝛿𝑥

2
, 𝑧 −

𝛿𝑧

2
, 𝑡) 

     = 𝑓(𝑥, 𝑧, 𝑡) − 𝛾𝑥
𝛿𝑥

2

Ƌ𝑓

Ƌ𝑥
− 𝛾𝑧

𝛿𝑧

2

Ƌ𝑓

Ƌ𝑧
 

 

𝑓2 = 𝑓 (𝑥 −
𝛿𝑥

2
, 𝑧, 𝑡) = 𝑓(𝑥, 𝑧, 𝑡) − 𝛾𝑥

𝛿𝑥

2

Ƌ𝑓

Ƌ𝑥
 

 

𝑓3 = 𝑓 (𝑥 −
𝛿𝑥

2
, 𝑧 +

𝛿𝑧

2
, 𝑡) 

    = 𝑓(𝑥, 𝑧, 𝑡) − 𝛾𝑥
𝛿𝑥

2

Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧

𝛿𝑧

2

Ƌ𝑓

Ƌ𝑧
 

The kinetic energy input rate on the 123̅̅ ̅̅ ̅ side is defined as 

𝑓𝑖𝑛𝑝𝑢𝑡 =
𝑓1 + 𝑓2 + 𝑓3

3
 

Substitution of the equations of 𝑓1, 𝑓2 and 𝑓3  obtained 

𝑓𝑖𝑛𝑝𝑢𝑡 = 𝑓2 = 𝑓 (𝑥 −
𝛿𝑥

2
, 𝑧, 𝑡) 

          = 𝑓(𝑥, 𝑧, 𝑡) − 𝛾𝑥
𝛿𝑥

2

Ƌ𝑓

Ƌ𝑥
 

Using the same method, the following was obtained 

𝑓𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓7 = 𝑓 (𝑥 +
𝛿𝑥

2
, 𝑧, 𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝛾𝑥

𝛿𝑥

2

Ƌ𝑓

Ƌ𝑥
 

2 
(𝑥, 𝑧) 

𝑧 

𝑥 

1 

3 

4 

5 

6 

7 

8 

𝛿𝑥
2ൗ  𝛿𝑥

2ൗ  

𝛿𝑧
2ൗ  

𝛿𝑧
2ൗ  

𝑓
6
 𝑓

1
 

𝑓
2
 

𝑓
3
 

𝑓
7
 

𝑓
8
 

ℎ1 ℎ4 ℎ5 

ℎ3 ℎ5 ℎ8 
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ℎ𝑖𝑛𝑝𝑢𝑡 = ℎ4 = ℎ (𝑥, 𝑧 −
𝛿𝑧

2
, 𝑡) = ℎ(𝑥, 𝑧, 𝑡) − 𝛾𝑧

𝛿𝑧

2

Ƌℎ

Ƌ𝑧
 

ℎ𝑜𝑢𝑡𝑝𝑢𝑡 = ℎ5 = ℎ (𝑥, 𝑧 +
𝛿𝑧

2
, 𝑡) = ℎ(𝑥, 𝑧, 𝑡) + 𝛾𝑧

𝛿𝑧

2

Ƌℎ

Ƌ𝑧
 

 

b. Time averaging 

The inflow and outflow of kinetic energy is observed at a 

very small time interval 𝛿𝑡. At that time interval, although 

very small, there is certainly a change in velocity. 

Therefore, an average velocity that represents the velocity 

at the time interval 𝛿𝑡 is required. Defined the average 

velocity at the time interval from 𝑡 = −
𝛿𝑡

2
 ke  𝑡 =

𝛿𝑡

2
  is,  

𝑓�̅� =
𝑓 (𝑥, 𝑧, 𝑡 −

𝛿𝑡
2

) + 𝑓(𝑥, 𝑧, 𝑡) + 𝑓 (𝑥, 𝑧, 𝑡 +
𝛿𝑡
2

)

3
 

Using the weighted Taylor series, the following was 

obtained 

𝑓𝑡 = 𝑓(𝑥, 𝑧, 𝑡) 

Thus, for the inflow outflow process at an interval of 𝛿𝑡, the 

velocity at time 𝑡 = 𝑡 can be used.  

 

The kinetic energy inflow-outflow at time interval 𝛿𝑡 is 

𝐼𝑂 = (𝑓𝑖𝑛𝑝𝑢𝑡 − 𝑓𝑜𝑢𝑡𝑝𝑢𝑡)𝛿𝑧 𝛿𝑡 + (ℎ𝑖𝑛𝑝𝑢𝑡 − ℎ𝑜𝑢𝑡𝑝𝑢𝑡)𝛿𝑥 𝛿𝑡 

By working out the input and output equations on the sides 

of the control volume that has been formulated, the 

followings are obtained 

𝐼𝑂 = (−𝛾𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
) 𝛿𝑧𝛿𝑡 + (−𝛾𝑧

Ƌℎ

Ƌ𝑧
) 𝛿𝑥𝛿𝑡 

The inflow-outflow causes a change in kinetic energy in the 

control volume,  

𝛿𝐸𝑘 = (𝛿𝐸𝑘𝑥 + 𝛿𝐸𝑘𝑧)𝜌𝛿𝑥𝛿𝑧 

The principle of conservation of energy, 

 

(𝛿𝐸𝑘𝑥 + 𝛿𝐸𝑘𝑧)𝜌𝛿𝑥𝛿𝑧 = (−𝛾𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
) 𝛿𝑧𝛿𝑡 

                                       + (−𝛾𝑧
Ƌℎ

Ƌ𝑧
) 𝛿𝑥𝛿𝑡 

The substitute the definition of 𝑓 and ℎ and work on the 

assumption of incompressible flow are 

(𝛿𝐸𝑘𝑥 + 𝛿𝐸𝑘𝑧)𝜌𝛿𝑥𝛿𝑧 = (−𝛾𝑥𝛿𝑥𝜌
Ƌ𝑢𝐸𝑘𝑥

Ƌ𝑥
) 𝛿𝑧𝛿𝑡 

                                     + (−𝛾𝑧𝜌
Ƌ𝑤𝜌𝐸𝑘𝑧

Ƌ𝑧
) 𝛿𝑥𝛿𝑡 

Both parts of the equation are divided by 𝜌𝛿𝑥𝛿𝑧𝛿𝑡, and 

worked out at very small 𝛿𝑡 close to zero,  
Ƌ𝐸𝑘𝑥

Ƌ𝑡
+

Ƌ𝐸𝑘𝑧

Ƌ𝑡
= −𝛾𝑥

Ƌ𝑢𝐸𝑘𝑥

Ƌ𝑥
− 𝛾𝑧

Ƌ𝑤𝐸𝑘𝑧

Ƌ𝑧
             …….(10)        

This equation is the kinetic energy conservation equation. 

 

4.3. Euler’s momentum conservation equation in 

horizontal direction.  

By using the weighted Taylor series and by using the same 

fluid flow conditions as the continuity equation formulation 

where horizontal velocity only changes in the horizontal 

axis and vertical velocity only changes in the vertical axis, 

Hutahaean (2024a) obtained Euler's momentum 

conservation equation in the horizontal direction is, 

𝛾𝑡,3

Ƌ𝑢

Ƌ𝑡
+

𝛾𝑥

2

Ƌ𝑢𝑢

Ƌ𝑥
= −𝛾𝑡,3

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡

𝜂

𝑧

𝑑𝑧 

−
𝛾𝑧

2

Ƌ

Ƌ𝑥
(𝑤𝜂𝑤𝜂 − 𝑤𝑤) − 𝑔

Ƌ𝜂

Ƌ𝑥
                      …….(11) 

 

                                            

V. VERTICAL WATER PARTICLE VELOCITY 

EQUATION. 

Vertical water particle velocity equation is formulated by 

integrating the continuity equation with respect to water 

depth. 

𝛾𝑥 ∫
Ƌ𝑢

Ƌ𝑥

𝜂

−ℎ

𝑑𝑧 + 𝛾𝑧𝑤𝜂 − 𝛾𝑧𝑤−ℎ = 0 

This equation is written as an equation for 𝑤𝜂 where the 

bottom vertical water particle velocity is ignored, 

𝑤𝜂 = −
𝛾𝑥

𝛾𝑧

∫
Ƌ𝑢

Ƌ𝑥

𝜂

−ℎ

𝑑𝑧 

Integration of the right-hand segment is solved by Leibniz 

Integration (Protter, Murray, Morrey, & Charles, 1985) 

∫
Ƌ𝑓

Ƌ𝑥
𝑑𝑧

𝛽

𝛼

=
Ƌ

Ƌ𝑥
∫ 𝑓 𝑑𝑧

𝛽

𝛼

−  𝑓𝛽

Ƌ𝛽

Ƌ𝑥
+ 𝑓𝛼

Ƌ𝛼

Ƌ𝑥
 

∫
Ƌ𝑢

Ƌ𝑥

𝜂

−ℎ

 𝑑𝑧 =
Ƌ

Ƌ𝑥
∫ 𝑢

𝜂

−ℎ

 𝑑𝑧 − 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
− 𝑢−ℎ

Ƌℎ

Ƌ𝑥
 

The integration of the first term of the right segment is 

solved by the depth average velocity concept and the bottom 

horizontal water particle velocity is ignored and substituted 

into the vertical velocity equation, 

𝑤𝜂 = −
𝛾𝑥

𝛾𝑧

(𝛽𝑢

Ƌ𝑈𝐷

Ƌ𝑥
− 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
) 

Transformation into depth average velocity equation, 

𝑊 = −
𝛾𝑥

𝛼𝑤𝜂𝛾𝑧
(𝛽𝑢

Ƌ𝑈𝐷

Ƌ𝑥
− 𝛼𝑢𝜂𝑈

Ƌ𝜂

Ƌ𝑥
)                ……(12) 

Where, 

𝐷 = ℎ + 𝜂 is the total water depth. The coefficient 𝛽𝑢, 

defined in Equation (5). The coefficient 𝛼𝑤𝜂 outlined in 

Equation (8), serves as the transformation coefficient from 

surface vertical water particle velocity to depth-averaged 

vertical water particle velocity. Similarly, 𝛼𝑢𝜂 specified in 

Equation (7)  is the transformation coefficient from surface 

horizontal water particle velocity to depth-averaged 

horizontal water particle velocity. 

 

VI. WATER SURFACE ELEVATION EQUATION. 

Water surface elevation equation is formulated by using 

Kinematic Free Surface Boundary Condition and kinetic 

energy conservation equation. 

6.1.Kinematic Free Surface Boundary Condition. 

Weighted kinematic water particle velocity is 
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𝑤𝜂 = 𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
+  𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 

Written as water surface elevation equation, 

Ƌ𝜂

Ƌ𝑡
=

1

𝛾𝑡,2

(𝑤𝜂 −  𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
) 

Added with depth average velocity variable, the water 

surface elevation equation becomes, 
Ƌ𝜂

Ƌ𝑡
=

1

𝛾𝑡,2
(𝛼𝑤𝜂𝑊 − 𝛾𝑥 𝛼𝑢𝜂𝑈

Ƌ𝜂

Ƌ𝑥
)                    ……(13) 

 

6.2. Integration of the conservation of energy equation. 

The energy conservation equation is multiplied by 𝑑𝑧 and 

integrated over the water depth, 

1

2𝑔
(∫

Ƌ𝑢𝑢

Ƌ𝑡

𝜂

−ℎ

𝑑𝑧 + ∫
Ƌ𝑤𝑤

Ƌ𝑡

𝜂

−ℎ

𝑑𝑧) = 

             
1

2𝑔
(−𝛾𝑥 ∫

Ƌ𝑢𝑢𝑢

Ƌ𝑥

𝜂

−ℎ
𝑑𝑧 − 𝛾𝑧(𝑤𝜂

3 − 𝑤−ℎ
3 )) 

Although there is an element of 
1

2𝑔
, in both segments of the 

equation, it cannot be removed, this is to keep the unit of the 

equation the same as the unit of the Kinematic Free Surface 

Boundary Condition, which is 𝑚/𝑠𝑒𝑐. 

 

The integration is solved by Leibniz integration method and 

by working on the concept of depth average velocity and 

bottom water particle velocity is ignored, 

𝜆
Ƌ𝜂

Ƌ𝑡
=

1

2𝑔
(−

Ƌ𝑈𝑈

Ƌ𝑡
−

𝛽𝑤

𝛽𝑢

Ƌ𝑊𝑊

Ƌ𝑡

−
𝛾𝑥

𝛽𝑢𝐷
(𝛽𝑢

Ƌ𝑈3𝐷

Ƌ𝑥

− 𝛼𝑢𝜂𝑈3
Ƌ𝜂

Ƌ𝑥
) −

𝛾𝑧𝛼𝑤𝜂

𝛽𝑢𝐷
𝑊3) 

Where, 

𝜆 ==

((𝛽𝑢 − 𝛼𝑢𝜂)
𝑈𝑈
2𝑔

+ (𝛽𝑤 − 𝛼𝑤𝜂)
𝑊𝑊
2𝑔

)

𝛽𝑢𝐷
 

The water surface change equation is the sum of the water 

surface change from the Kinematic Free Surface Boundary 

Condition and the water surface elevation equation change 

from the energy conservation equation. 

(1 + 𝜆)
Ƌ𝜂

Ƌ𝑡
=

1

𝛾𝑡,2

(𝛼𝑤𝜂𝑊 − 𝛾𝑥 𝛼𝑢𝜂𝑈
Ƌ𝜂

Ƌ𝑥
) 

−
1

2𝑔
(

Ƌ𝑈𝑈

Ƌ𝑡
+

𝛽𝑤

𝛽𝑢

Ƌ𝑊𝑊

Ƌ𝑡
+

𝛾𝑥

𝛽𝑢𝐷
(𝛽𝑢

Ƌ𝑈3𝐷

Ƌ𝑥
− 𝛼𝑢𝜂𝑈3 Ƌ𝜂

Ƌ𝑥
) +

𝛾𝑧𝛼𝑤𝜂

𝛽𝑢𝐷
𝑊3)                              ….(14) 

Equation (14) is the final water surface elevation equation 

of the water surface elevation equation. In the right segment 

of the equation there is a change in kinetic energy which is 

the source of energy for the change in potential energy in 

the left segment, Thus this equation can be called the energy 

conservation equation, which is a balance equation between 

changes in potential energy and changes in kinetic energy.  

VII. HORIZONTAL WATER PARTICLE 

VELOCITY EQUATION. 

Equation (11) is worked out on the surface at 𝑧 = 𝜂, 

𝛾𝑡,3

Ƌ𝑢𝜂

Ƌ𝑡
+

𝛾𝑥

2

Ƌ𝑢𝜂𝑢𝜂

Ƌ𝑥
= −𝑔

Ƌ𝜂

Ƌ𝑥
 

By using variable depth average velocity, 

𝛾𝑡,3𝛼𝑢𝜂
Ƌ𝑈

Ƌ𝑡
+

𝛾𝑥𝛼𝑢𝜂

2

Ƌ𝑈𝑈

Ƌ𝑥
= −𝑔

Ƌ𝜂

Ƌ𝑥
                    ….(15) 

 

VIII. NUMERICAL METHOD 

The space differential is solved by the Finite Difference 

Method while the time differential is solved by the 

predictor-corrector method. Details of the numerical 

methods as used by Hutahaean (2024a).   

 

IX. MODEL OUTCOME 

a. Wilson’s Criteria (1963) 

Wilson (1963) categorized wave profiles based on the ratio 

of wave crest elevation to wave height (Fig (3)). The wave 

profiles based on the comparison numbers are presented in 

Table (3). 

 

 

 

 

 

 

 

 

 

 

 

Fig (3). Water wave profile according to Wilson (1963). 

 

Table (3)  Water wave profile criteria  (Wilson (1963)) 

Wave type 𝜂𝑚𝑎𝑥

𝐻
 

Airy/sinusoidal waves < 0.505 

Stoke’s waves 0.505 − 0.635 

Cnoidal waves 0.635 − 1 

Solitary waves = 1 

 

a. Model execution at constant water depth.. 

In this section, the results of model execution at constant 

water depth (Fig (4)) are presented, with two water depths, 

ℎ = 20.0  and ℎ = 8.0 m.  

 

 

 

 

 

𝐻 

Still water level 

crest 

𝜂
𝑚𝑎𝑥

 

trough 
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Fig (4). Constant water depth 

 

As input, sinusoidal waves with the equation 𝜂(0, 𝑡) =

𝐴 sin 𝜎𝑡, is  used, where 𝜎 =
2𝜋

𝑇
, 𝑇 is the wave period, 𝑇 =

8.0 sec. While wave amplitude 𝐴 is used from 0.3-1.3 m, in 

order to obtain the types of wave profiles at various wave 

amplitudes. 

 

a.1. Wave amplitude 𝐴 = 0.30 m 

The model execution results at ℎ = 20.0 m is shown in Fig 

(5), where 
𝜂𝑚𝑎𝑥

𝐻
=

0.33

0.6
= 0.55, is quite close to Wilson's 

sinusoidal profile criteria. The model execution results at 

ℎ = 8.0 m is presented in Fig (6), where 
𝜂𝑚𝑎𝑥

𝐻
=

0.37

0.6
=

0.62, which according to Wilson’s criteria belongs to 

Stoke’s profile. 

 

On  Stoke’s profile, there is a deflection at the transition 

from wave crest to wave trough at 𝜂 ≈ 0.0 𝑚. The 

deflection can be the difference between sinusoidal profile 

and Stoke's profile. In the sinusoidal profile Fig (5), the 

deflection is actually visible but still very weak, the 

deflection can be eliminated by reducing the wave 

amplitude, thereby at deep water depth ℎ = 20.0 m, wave 

amplitude 𝐴 = 0.30 m  is the transition limit from 

sinusoidal profile to Stoke's profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (5). Sinusoidal wave profile, 𝐴 = 0.30 𝑚, ℎ = 20.0 𝑚 

 

 

a.2. Wave amplitude 𝐴 = 0.60 m 

The model execution results at ℎ = 20.0 m are presented in 

Fig (7), where 
𝜂𝑚𝑎𝑥

𝐻
=

0.70

1.2
= 0.583, which based on 

Wilson's criteria belongs to Stoke's profile. In addition, 

there is a deflection at the transition from wave crest to 

wave trough, this deflection is also found in the Stoke's 

profile in Fig. (6).  Fig (8) presents the model execution 

results at water depth ℎ = 8.0 m, where 
𝜂𝑚𝑎𝑥

𝐻
=

0.87

1.2
=

0.725, with the wave profile belonging to the cnoidal 

profile. Deflection changes to a small wave crest.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig (6). Stoke’s wave profile, 𝐴 = 0.30 𝑚, ℎ = 8.0 𝑚 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (7). Stoke wave profile, 𝐴 = 0.60 𝑚, ℎ = 20.0 𝑚 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (8). Cnoidal wave profile, 𝐴 = 0.60 𝑚, 

ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜂(0, 𝑡) = 𝐴 sin 𝜎𝑡 
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             ℎ = 8.0 𝑚  

 

a.2. Wave amplitude 𝐴 = 1.30 m 

The model execution results at ℎ = 20.0 m are shown in Fig 

(9), where 
𝜂𝑚𝑎𝑥

𝐻
=

1.75

2.5
= 0.7 which according to Wilson's 

criteria belongs to the Cnoidal profile. The wave height is 

reduced from 𝐻 = 2.60 𝑚 to 2.50 𝑚, that is assumed due 

to deflection in the form of small wave. In Fig (10), the 

model execution results at water depth ℎ = 8.0 𝑚 are 

presented, three wave crests are formed, the largest of which 

is the main wave. In this case, the main wave can be 

classified as a solitary wave with wave height 𝐻 = 2.20 𝑚,  

considering that the entire wave body is above the still water 

level.  There is a reduction in wave height because some of 

the wave energy is used to form two small waves, one of 

which has a solitary wave  

profile. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig (9). Cnoidal wave profile, 𝐴 = 1.30 𝑚, 

            ℎ = 20.0 𝑚  

 

 

 

 

 

 

 

 

 

 

 

 

Fig (10). Solitary wave profile, 𝐴 = 1.30 𝑚, ℎ = 8.0 𝑚 

 

The results from the model execution at a constant water 

depth revealed that sinusoidal wave profiles typically 

manifest in waves with small amplitudes. The formation of 

a wave profile is influenced by both the wave amplitude and 

the water depth. In deep water, a wave with a given 

amplitude might exhibit a sinusoidal profile, whereas the 

same amplitude in shallow water could result in a Stoke's 

profile. Conversely, a Stoke's profile in deep water may 

transition into a cnoidal profile in shallow waters, and a 

cnoidal profile in deep water can evolve into a solitary 

profile when the water depth decreases. 

The distinction between a sinusoidal profile and a Stoke's 

profile is not only evident through the Wilson criteria but 

also by the characteristic deflection seen in the Stoke's 

profile, which appears as a flattened line at the transition 

from wave crest to wave trough. In contrast, in a cnoidal 

profile, this deflection manifests as small, gently sloping 

waves, and in a solitary profile, the deflection presents as 

two or more smaller waves. 

Additionally, the primary wave is often accompanied by a 

tail wave or multiple secondary waves. The phenomena of 

shoaling and breaking of these secondary waves, which will 

be further discussed in the following section, are critical 

aspects of coastal wave dynamics. 

 

b. Model execution at sloping bottom. 

In this section, the model is executed on a sloping sea bed 

(Fig (11)), with  water depth  15.0-1.0 m, bottom slope 
14.0

150.0
= 0.093.  

 

 

 

 

 

 

 

 

 

 

Fig (11). Sloping sea bed 

 

In the simulation, a wave with a period of 8 seconds and an 

amplitude of 1.00 meter was input. Unlike previous 

depictions, the simulation results for this sloping bottom 

scenario are presented with the water depth ℎ on the 

abscissa, allowing for a clear visualization of the 

relationship between water depth and wave characteristics. 

The waves transition from deep to shallow water, indicating 

that in the model, waves move from right to left. 

The simulation was conducted until the main wave reached 

a water depth of approximately ≈ 1.3 m. The results are 

presented in Figure (12) and Figure (13). At this depth ℎ ≈

1.3 𝑚, the height of the main wave stabilizes at 0.6 meters, 

and the wave profile transitions to a solitary profile, as 

shown in Figure (13).  
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Fig (12). Wave condition after breaking. 

 

Notes: CL (Crest Line) is the line that connects the 

maximum water level elevation along the wave trajectory.   

In Figure 12, it is apparent that there are two breaking 

events; however, there are actually more than two, as will 

be demonstrated in the next section (Figure 14). The first 

breaking event, which occurs at greater water depths, 

involves the main wave, while the second event, occurring 

in shallower waters, involves the breaking of the tail wave 

or secondary wave. 

 

 
Fig (13). Main wave profile at water depth ≈ 1.3 m 

 

The wave condition after the first breaking in the surf zone 

is highly unstable, as observed in the unstable crest line 

(Fig. (13) and Fig. (14)). Wave instability in the surf zone 

is a well-documented phenomenon. Within this zone, the 

secondary wave experiences breaking, which is depicted in 

Fig.(14), where two breakings occur in two secondary 

waves. The wave profile is a solitary profile, as shown in 

Fig.(15).  

 

 
Fig (14). Breaking of the secondary wave. 

 

There are 3 breaking points with 3 breaking conditions, 

namely : 

a. Main wave breaking, 𝐻𝑏𝑟 = 3.06 m ,           

 ℎ𝑏𝑟 = 5.17 m,   
𝐻𝑏𝑟

ℎ𝑏𝑟
= 0.59 

b. 1st secondary wave breaking 1  𝐻𝑏𝑟 = 3.19 m, 

     ℎ𝑏𝑟 = 3.87 m,   
𝐻𝑏𝑟

ℎ𝑏𝑟
= 0.82 

c.2nd secondary wave breaking  𝐻𝑏𝑟 = 2.3 m , 

  ℎ𝑏𝑟 = 3.45 m,   
𝐻𝑏𝑟

ℎ𝑏𝑟
= 0.67 

 

Breaker height as suggested by Komar and Gaughan  (1972) 

is:  

𝐻𝑏𝑟 = 0.39 𝑔
1

5ൗ (𝑇0𝐻0
2)

2
5ൗ                                …..(16) 

Where 𝑇0 = 8.0 sec., 𝐻0 = 2.00 m, 𝑔 = 9.81 m/sec2 obtain 

𝐻𝑏𝑟 = 2.46 m. The closest model result is the 2nd secondary 

breaking wave 𝐻𝑏𝑟 = 2.2 m. 

 

Breaker depth index from Mc Cowan (1894), 

 
𝐻𝑏𝑟

ℎ𝑏𝑟
= 0.78                                                       …..(17) 

The closest model result is the breaking of the 1st secondary 

wave  
𝐻𝑏𝑟

ℎ𝑏𝑟
= 0.82.  

 

 
Fig (15). Breaking wave profile of the secondary wave. 
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Next, the breaking condition of the main wave is shown 

(Fig. (16)) with the wave profile being a solitary profile, 

Fig. (17). 

 
Fig (16). The breaking condition of the main wave. 

  

 

Fig (17). Wave profile of the main wave at the breaking 

point. 

 

The model results from the sloped bottom indicate that it 

can effectively simulate the shoaling-breaking process and 

subsequent movement in very shallow water depths. The 

simulation identifies three types of breaking waves: a 

primary breaking wave and two secondary breaking waves, 

with the wave profile adopting a solitary shape at the 

moment of breaking. If the simulation continues, there may 

be additional breakings, such as a fourth and fifth wave. 

Additionally, the model reveals a significant increase in 

vertical water particle velocity at the point of breaking. 

According to the continuity equation, a decrease in water 

depth leads to a greater disparity between input and output 

in the horizontal direction, which, in turn, escalates the 

vertical velocity. Thus, there is a likelihood that wave 

breaking may occur when the vertical velocity becomes 

excessively high. 

 

 

 

X. CONCLUSION 

The study demonstrated that by incorporating Surface 

Kinematic Boundary Conditions as the water surface 

elevation equation and combining it with the kinetic energy 

conservation equation, a model was developed capable of 

simulating wave breaking until a reduction in wave height 

occurs in shallow water. This combination generates an 

equation that adheres to the energy conservation principle, 

establishing a balance between potential energy changes, 

indicated by variations in water surface elevation, and 

kinetic energy changes. 

The model, with modifications to its calculation algorithm, 

consistently generates four distinct wave profiles according 

to wave height and water depth: sinusoidal, Stoke's, cnoidal, 

and solitary profiles. Overall, the model effectively 

simulates water wave mechanics in both deep and shallow 

water environments. 

Future developments should focus on refining the 

estimation of breaker height and depth to align more closely 

with the results obtained from physical model studies 

conducted by previous researchers, as well as those derived 

from velocity potential theory.  
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