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Abstract— With the increasing power density of electronic equipment, 

heat dissipation technology has become the key to ensure the stable 

operation of equipment. Because of its unique structural design, the 

Tesla valve heat sink shows great potential in the heat dissipation of 

high-power electronic devices. However, the traditional heat transfer 

model prediction method has the problems of complex calculation and 

low efficiency. The purpose of this study is to explore a method of heat 

transfer model prediction based on training neural network to 

improve the accuracy and efficiency of heat transfer efficiency 

prediction of Tesla valve heat sink. The heat transfer data of Tesla 

valve heat sink under different structures were collected by numerical 

simulation. The data were then used to train a feed forward neural 

network. Through a lot of training and verification, the neural network 

model shows good generalization ability and can accurately predict 

the heat transfer efficiency under unknown conditions. In this study, 

the effects of network structure, training algorithm and optimization 

strategy on model performance are discussed, and an improved 

network architecture is proposed to improve the accuracy of 

prediction. Finally, the advantages of the proposed method in 

computational efficiency and prediction accuracy are verified by 

comparison with traditional methods. 

 

I. INTRODUCTION 

In the rapid development of electronic technology, the 

performance leap of high-power density electronic devices 

is closely related to the improvement of heat dissipation 

efficiency [1]. With the miniaturization and high frequency 

of integrated circuits and the continuous rise of computing 

speed, the heat generated inside electronic devices has 

increased sharply, and the heat dissipation problem has 

become one of the key factors restricting its performance 

bottleneck. With its unique geometric structure and 

excellent heat transfer performance, the Tesla valve heat 

sink is considered as one of the new generation of efficient 

heat dissipation solutions [2]. 

The Tesla valve, through a carefully designed 

asymmetric flow channel structure, enables the fluid to 

flow efficiently in a specific direction, while being 

significantly hindered in the opposite direction. This 

feature not only improves the heat dissipation efficiency, 

but also reduces energy consumption, providing a strong 

guarantee for the efficient and stable operation of 

electronic equipment. Domestic and foreign scholars 

continue to deepen the research of Tesla valve, from the 

basic flow characteristics analysis to the complex heat 
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transfer performance optimization, each progress indicates 

its broad application prospects in the future heat 

dissipation technology. 

At present, the research of Tesla valve has covered 

multiple dimensions. The study of Thompson et al. [3] 

revealed the effects of valve spacing, series and Reynolds 

number on the performance of multistage Tesla valves, 

providing a theoretical basis for design optimization [3]. 

S.F. de Vries et al. verified the feasibility of the new Tesla 

valve in enhancing heat transfer through innovative design, 

combined with steady-state two-phase flow experiment 

and laminar single-phase simulation, and further promoted 

the application of Tesla valve in high-efficiency heat 

dissipation systems such as heat pipes [4]. Based on the 

Fluent simulation platform, Ren Pu studied the fluid flow 

characteristics of the Tesla valve during reverse navigation, 

and also analyzed the causes of cavitation in the Tesla 

valve and the influence of the cavitation model on the fluid 

flow [9]. In recent years, artificial intelligence technology 

and neural network technology have provided new 

possibilities to solve this problem. 

In the early 1990s, the personal computer (PC) era was 

represented by the Intel 80486 microprocessor (486 era), 

the CPU power consumption is relatively low, such as the 

maximum power consumption of Intel 486DX4 processor 

reached 5W, the heat dissipation demand is not high, the 

design of the radiator is usually more simple, generally 

using the passive heat dissipation of static heat sink, or 

equipped with a small fan to achieve active heat 

dissipation. With the increase of CPU frequency, such as 

the introduction of Intel Pentium series, power 

consumption and heat began to increase, and power 

consumption was also greatly increased to 11.2w, and the 

radiator began to be equipped with a fan, forming the 

prototype of an air-cooled radiator. In the Pentium III and 

IV era, the power consumption and heat output of the CPU 

increased sharply, and the volume of the radiator increased 

accordingly, and copper base, plug copper and copper-

aluminum combined fin radiator appeared to improve the 

heat dissipation efficiency. 

However, the complex structure of Tesla valve makes 

its flow and heat transfer mechanism difficult to be fully 

explained by traditional theories, especially under complex 

conditions such as high flow rate and multiphase flow, its 

performance prediction and optimization face many 

difficulties. In addition, existing prediction models often 

rely on large amounts of experimental data, which are 

expensive to compute and difficult to respond quickly to 

design changes. 

To solve these problems, artificial intelligence 

technology and neural network technology are introduced 

in this study. Because of its powerful nonlinear mapping 

ability and self-learning ability, neural network can 

construct accurate prediction model. The prediction 

method of heat transfer mode of Tesla valve heat sink 

based on training neural network is the concrete practice of 

this idea. We aim to explore a method for predicting heat 

transfer mode of Tesla valve heat sink based on training 

neural network, in order to improve the accuracy and 

computational efficiency of prediction [5][6][7][8]. 

In this paper, CFD numerical simulation technology is 

first used to build a variety of Tesla valve models, and 

simulation analysis is carried out under the same working 

conditions, and detailed heat transfer data including inlet 

and outlet pressure difference, Nussel number, and 

geometric structure parameters are collected. These data 

will serve as the "nourishment" for neural network training 

and provide a solid foundation for model construction. 

A feedforward neural network is then designed and 

trained, which realizes complex mapping of the heat 

transfer performance of the Tesla valve through the 

connection and activation of multiple layers of neurons. In 

the training process, the network structure is optimized and 

the hyperparameters are adjusted to improve the prediction 

accuracy and generalization ability of the model. At the 

same time, the influence of two key parameters, the length 

of the flow channel section and the Angle of the valve, on 

the heat transfer performance is studied, and a new way to 

optimize the structure of the Tesla valve is explored by 

adjusting these parameters. 

This study is expected to establish a set of neural 

network-based heat transfer performance prediction model 

of Tesla valve heat sink, which can accurately and 

efficiently predict heat transfer performance of different 

structures of Tesla valves, and provide strong support for 

the design and optimization of heat sink. 

As an important cooling element in electronic products, 

the development history of electronic heat sink closely 

follows the evolution of electronic technology. With the 

improvement of the performance of electronic products, 

heat dissipation technology is also constantly improving 

and innovating [10]. 

The research significance of this paper comes from the 

use of CFD numerical simulation to collect heat transfer 

data of different Tesla valve models under the same 

working conditions, including inlet and outlet pressure 

difference, Nussel number, geometric structure parameters, 

etc. Then design and train a feedforward neural network, 

establish a training model, and adjust the grid structure. 

The influence of two parameters, the length of the flow 

channel section and the Angle of the valve, on the heat 

transfer performance of the Tesla valve was studied, and 
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the optimization algorithm was finally able to improve the 

generalization ability and prediction accuracy of the model. 

The prediction model was used to predict the heat transfer 

performance of different structures and optimize the 

structure of the Tesla valve [11][12]. 

 

II. TESLA VALVE MODEL ESTABLISHMENT 

AND CFD PRE-TREATMENT 

Since Tesla valves are mostly used in electronic 

products, the size of the design in this paper will be 

determined according to the size of electronic products. 

CAD is used to establish a two-dimensional geometric 

model, and 3D is generated by the built-in modeling tool 

in ANSYS2022. Then Mesh in ANSYS2022 is used to 

divide the model and name the boundary. 

2.1 Initial selection of the Tesla valve geometry model 

The average length of the Tesla valve designed in this 

paper is 100mm. As shown in Figure 1, the width of the 

flow channel section is fixed at 3mm, the length is D, and 

the valve Angle is α. These two geometric parameters 

change within the specified range, while the remaining 

parameters remain unchanged. Each Tesla valve is a one-

stage, and this paper designs a two-stage Tesla valve. The 

fluid in the channel is water, and its physical properties 

change with temperature. Wall material is copper. 

 

Fig. 1: Sample size of Tesla valve/mm 

 

Tesla valve in the counter current process will appear 

some unique fluid mechanics phenomena, these 

phenomena are the result of its unique geometric structure 

and the physical characteristics of the fluid. Some key 

hydrodynamic phenomena such as increased flow rate, 

decreased pressure, cavitation effect, eddy current 

formation, fluid separation, enhanced heat exchange, flow 

asymmetry, turbulent transition, hydrodynamic instability, 

and energy dissipation may occur during the counter 

current process of the Tesla valve. 

The speed of the upstream inlet and the upstream inlet is 

0.05m/s, and the rest remain unchanged. The exit domain 

is set as the exit boundary. The fluid can effectively avoid 

the wing-like barrier and flow from the right to the left 

unimpeded, and the effect of acceleration is obtained due 

to the flow pressure, and the speed has been accelerating in 

the main channel, the speed is close to 0.1m/s; When fluid 

flows in reverse, it encounters a wing-like barrier. 

Whenever fluid passes through one of these channels, it 

flows into a wing-like barrier due to inertia. The shock of 

back flow and the sudden increase in pressure can prevent 

the fluid from moving forward, making it difficult to pass 

through the valve. The more wing-shaped obstacles, the 

more resistance the fluid is subjected to in the reverse flow, 

which creates the one-way flow characteristics of the Tesla 

valve. 

A monitoring point is provided at the reverse flow inlet 

through road, near the oblique channel, to monitor the 

speed and pressure at the point. 

 

III. NEURAL NETWORK 

Artificial neural network (ANN) or analog neural 

network (SNN). These networks consist of interconnected 

neurons, divided into input layers, one or more hidden 

layers, and output layers, where neurons perform 

mathematical operations on input data and pass the results 

to the next layer, allowing the network to learn complex 

patterns and relationships in the data. Each node in the 

neural network receives input processing and passes the 

output to the next node[13] [14] [15]. 

Import Fluent simulation data results into the MATLAB 

workspace. The four data of upstream Nuf, counter-current 

Nur, relative performance evaluation standard RPEC and 

Di are imported into the work area as labels, and the output 

form is a numerical matrix, denoted as "T". The length of 

the section of the flow channel and the Angle of the valve 

are imported into the work area as features, and the output 

form is a numerical matrix, denoted as "X"; Set several 

sets of parameters as shown in Table 1, and import them 

into the work area as prediction objects. The output form is 

a numerical matrix, which is denoted as "YC". 

Table.1: Predicted parameters 

 

 

There are 9 samples in total. The 9 samples are divided 

into three parts: 70% training set, 15% verification set and 

15% test set. In other words, 7 samples are taken as 

training set, 1 sample as verification set and 1 sample as 

test set. Using the least square method, it occupies a large 

memory, takes the least time, and can be automatically 
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stopped. The results include Neural Network part, 

Algorithms part, Progress part and Plot part. 

Save the trained neural network model, use the training 

model to predict the previously designed prediction 

parameters, and get the result "Y". The results are 

summarized in Table 4. 

 

IV. INTERPRETATION OF RESULT 

4.1 Fluent Simulation result analysis 

Table 2 Simulated result 

 

 

Table 3 Forecast summary 

 

Upflow Nu and counter flow Nur vary as the valve 

Angle increases. When the valve Angle is small, the Nu 

value is higher and the heat transfer effect is better. This 

may be because the smaller valve Angle helps the fluid 

form more vortex and turbulence inside the Tesla valve, 

which enhances heat transfer. However, as the valve Angle 

increases, the Nu value decreases, which may be due to the 

energy loss caused by the increase in the fluid flow path. 

The pressure drop data show that the down-flow pressure 

drop ΔPf and the counter-flow pressure drop ΔPr decrease 

as the valve Angle increases. This may be because the 

larger valve Angle helps the fluid flow through the valve 

more smoothly, reducing the resistance of the fluid. 

However, too low a valve Angle can result in too large a 

pressure drop, which can affect the overall performance of 

the Tesla valve. RPEC is used as a comparison of the 

overall performance of the Tesla valve in reverse flow and 

forward flow, and the closer the value is to 1, the better the 

performance. The RPEC value does not monotonically 

increase with increasing cross section length, which 

indicates that the design of the Tesla valve needs to find a 

balance between heat transfer efficiency and fluid flow 

resistance. The Di parameter is used as a measure of single 

flow, and its value reflects the resistance of the valve to 

counter current. As shown in Table 3, Di values are lower 

in some test groups, which may mean that these Tesla 

valve designs are more effective at preventing backflow. 

The length of the cross section also affects the 

performance of the Tesla valve. Increasing the cross 

section length helps to increase the Nu value and thus the 

heat transfer performance, but it may also lead to an 

increase in pressure drop. This shows that when designing 

the Tesla valve, it is necessary to consider the heat transfer 

efficiency and the resistance of the fluid flow to achieve 

the optimal design. In summary, the valve Angle of the 

Tesla valve and the cross section length of the flow 

channel have a significant impact on its heat transfer 

performance. Smaller valve Angle is beneficial to increase 

Nu value, but may lead to increased pressure drop. The 

larger cross section length helps to improve the heat 

transfer performance, but may be unfavorable to the single 

conduction. Therefore, the design of the Tesla valve needs 

to consider multiple factors, by optimizing the valve Angle 

and cross section length to balance the heat transfer 

efficiency and fluid flow resistance to achieve the best heat 

dissipation results. In addition, the difference between the 

predicted results of the neural network model and the 

simulated data suggests that the model may require more 

training data or a more complex network structure to 

improve the prediction accuracy. Future research could 

further explore the optimal combination of these 

parameters and optimize the design of the Tesla valve 

through experimental validation. 

The parts of Tesla valve where heat transfer is enhanced 

generally appear in the parts where turbulence is 

intensified, cavitation phenomenon is significant and eddy 

current is generated, and the speed of these parts will be 

significantly different from other parts. Now, the influence 

of valve Angle and flow channel section length on the heat 

transfer performance of Tesla valve is analyzed 

respectively. 

Test1, test2, test3, the cross section length of the flow 

channel of the three experimental groups is 3mm, and their 

valve angles are 30°, 45°, and 60° respectively. According 

to the simulation results, Nu at 30° is the highest among 

the three groups, indicating the best heat transfer effect. 

The fluid of the curve and the fluid of the straight 

passage have impact interaction at the junction, resulting 

in three low flow rate areas, the pressure drops sharply, the 

speed increases, resulting in cavitation phenomenon, and 

then enters the low flow rate area, the pressure increases, 

and the cavitation bubble disappears. As the valve Angle 

increases, the Angle of fluid interaction between the bend 

and the straight passage decreases, and the cavitation effect 

weakens. As can be seen from the figure, the cavitation 

region of test2 and test3 is smaller than that of test1, and 

the cavitation phenomenon can enhance the effect of heat 

transfer, so the Nu of test1 is the largest among the three. 
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The heat transfer performance of the Tesla valve is 

closely related to the flow state of the internal fluid. Under 

counter current conditions, the flow of fluid inside the 

valve is impeded, and this obstruction causes the fluid to 

separate in some parts of the valve, forming a flow 

separation zone. These separation zones can lead to local 

stagnation of the fluid, which affects heat transfer 

efficiency. However, this flow separation also increases 

the contact time between the fluid and the valve wall, 

helping to improve heat exchange efficiency. Especially 

when the flow separation zone is accompanied by the 

formation of eddy currents, this situation will cause the 

fluid to further enhance the heat exchange effect with the 

wall, because the eddy currents can promote the heat 

mixing and transfer inside the fluid. With the increase of 

cross section length, Nu value increases and heat transfer 

performance is enhanced. At the same time, turbulent flow 

occurs in a larger flow channel, and the probability of eddy 

current increases. These unstable flows are also 

responsible for enhanced heat transfer. 

The larger the cross section length of the flow channel, 

the fluid will gradually become obstructed under the 

condition of forward flow. More and more fluid will enter 

the curved channel due to inertia, showing the effect of 

obstructing fluid flow similar to that under the counter 

current condition, indicating that the increase in the cross 

section length will increase the probability of fluid 

entering the curved channel at the intersection of the 

straight channel and the curved channel. This is not good 

for optimizing the single pilot connectivity of the Tesla 

valve. 

Changes in the cross section length of the flow channel 

also affect the heat transfer performance and cavitation 

phenomenon of the Tesla valve. Increasing the cross 

section length can increase the heat transfer area and thus 

improve the heat transfer efficiency. However, excessive 

cross section lengths may lead to increased impediments to 

fluid flow, reducing the occurrence of turbulence and eddy 

currents, and thus reducing heat transfer efficiency. 

Therefore, the design of Tesla valves requires a balance 

between heat transfer efficiency and fluid flow resistance. 

Equivalent points are set at the entrance, exit, middle 

interchange and bend of the Tesla valve of test1 and test5, 

respectively, to monitor the speed and pressure changes in 

the channel under the condition of forward flow and 

reverse flow. The specific location is shown in Table 1. 

 

Fig. 2 Set equivalent points 

 

The equivalent points Point1 and Point2 at the middle 

interchange are used to monitor the velocity difference 

when the fluid cavitation occurs here in the case of counter 

current. Subjectively, it is believed that these two points 

will produce a large velocity difference in the case of 

counter current, while in the case of forward flow, it will 

not produce a large velocity difference. The equivalent 

point Point3 at the entrance is used to monitor the speed at 

the outlet when the Tesla valve is upstream and the speed 

and pressure change when the valve is upstream. The 

equivalent point Point4 is set in the first bend under the 

counter-current condition to monitor the velocity and 

pressure change trend of the fluid in the bend under the 

counter-current condition. The equivalent points Point5 

and Point6 are set at the position near the exit of the 

second bend in the case of counter current, where a 

temporary cavitation phenomenon may occur. Point6 is set 

at the core of this low-speed area, and Point5 is located at 

the high-speed area of the exit of the bend. 

 

Fig. 3 test1 Reverse flow velocity variation diagram 

 

http://www.ijaers.com/


Jia et al.                                                               International Journal of Advanced Engineering Research and Science, 11(9)-2024 

www.ijaers.com                                                                                                                                                                               Page | 21 

As shown in Table 2, under the counter current 

condition of test1, the speed difference between Point1 and 

Piont2 is the largest, which is consistent with the initial 

hypothesis. It can be seen from the figure that the speed of 

Piont2 is close to stable after 1.5s, maintaining at 0.01m/s, 

while the speed of Point2 is finally maintained at 0.1m/s. 

The difference between the two is nearly 10 times, and the 

huge speed difference creates the possibility of cavitation. 

Similarly, there is a large speed difference between 

Point5 and Point6, and the speed of Point4 does not 

change much. It only takes about 0.5s from the beginning 

to the final stabilization, which is similar to the 

stabilization time of Point1, Point5 and Point3. Both 

Point6 and Point2 are detection points located in the low-

speed region. It can be seen that there is a fluctuation in 

the velocity within 0.025s, which is due to the sudden 

increase of the fluid velocity in the flow channel, resulting 

in the fluid velocity in these two low-speed regions being 

affected until the flow becomes stable. The speed slows 

down. 

 

Fig. 4 test1 Reverse flow pressure variation diagram 

 

As can be seen from Fig. 4, the pressure of the Tesla 

valve system is basically stable after 0.5s, Point3 is the 

monitoring point at the entrance, and the pressure is the 

largest. After the fluid enters the bend, the pressure of 

Point1 and Point2 is close, and the pressure of Point2 is 

slightly smaller, and the pressure in the cavitation core 

area is smaller than the surrounding pressure. The pressure 

of Point5 and Point6 is basically the same, and they are 

both the monitoring points at the counter current outlet. 

The pressure of these two points is the smallest or perhaps 

the difference is very small, which is not easy to see in the 

figure, and also indicates that the cavitation phenomenon 

here is not obvious. The counter current velocity pressure 

is basically stable after 0.75s, the flow of the fluid is 

basically unchanged, the vortex and cavitation phenomena 

exist at the same time, due to Angle reasons, the 

acceleration of the speed at the fluid junction is obvious, 

and the speed of the bend is basically the same as the inlet 

speed. 

 

Fig. 5 test1 downstream velocity variation diagram 

 

Fig. 6 test1 Up-flow pressure variation diagram 

 

In the case of downflow, as shown in Figure 9, the 

speed of all monitoring points (except Point4) increases 

relative to the counterflow. As the monitoring point of the 

curve, the speed of Point4 is even lower relative to the 

counterflow, maintaining at about 0.02m/s after 

stabilization. It can be seen that in the downflow, the fluid 

does not flow into the curve as much as the counterflow. 

Point5 and Point6 as inlet monitoring points along the flow, 

the speed increases obviously. Point1 and Point2 are the 

monitoring points in the middle of the Tesla valve, and the 

speed increase is not large in the forward flow, at this time, 

most of the fluid flows in the straight channel, and the 

fluid in the bend is less, and the acceleration effect at the 

intersection is relatively small. 

       As can be seen from Figure 9, the pressure of similar 

monitoring points is very close, and the system begins to 

stabilize at 0.5s, which is much faster than the counter 

current situation. Only within 0.1s at the beginning, the 

pressure changes greatly, and the pressure is proportional 

to the distance from the upstream inlet. The highest 

pressure is close to 30Pa, and the maximum pressure after 

stability is about 15Pa. The minimum value is around 4Pa. 
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Fig. 7  test1 Particle trajectories at interchanges of 

counter current 

 

Fig. 8 test5 Reverse flow velocity variation diagram 

 

As can be seen from Figure 8, the complexity of its 

speed change is much higher than that of test1, but there 

are still some similarities. For example, the speed 

difference between Point1 and Point2 is still very large, 

and the speed difference between Point5 and Point6 is 

slightly larger than that of test1. The speed of Point5 began 

to exceed the speed of Point1 after 1.5s, which was very 

close to the two. However, Point6, which was also in the 

low-speed area, did not slow down to 0 like Point1 and 

remained stable at about 0.028m/s. Combined with the 

speed cloud map, In theory, there should also be a zero-

speed region in the low-speed region of Point6 like the 

middle interchange, which should be because the location 

of the point is not accurate. If it is really in the core of the 

low-speed region, the speed should be close to 0 after 

stability. The increase of the valve Angle and the increase 

of the flow channel section is beneficial to the stability of 

the flow of the Tesla valve. 

As can be seen from Figure 9, the maximum pressure 

reaches 25Pa and is about 13Pa after stability. Compared 

with test1, which has a maximum value of close to 30Pa 

and a maximum value of 15Pa after stability, test5 has a 

lower system pressure, which indicates that test5 has a 

better system stability than test1. 

 

 

Fig. 9 test5 Reverse flow pressure variation diagram 

 

Point3 is the inlet monitoring point in the case of 

counter current, the pressure is the highest, the pressure 

drops after the fluid enters the bend, and finally maintains 

around 12.5Pa. The pressure difference between Point1 

and Point2 is about 2.5Pa, the pressure of Point5 and 

Point6 is very close to that of the surrounding area, and the 

pressure in the cavitation core area is smaller than that in 

the surrounding area. In the case of counter flow, the 

pressure at the end of the Tesla valve, Point5 and Point6, 

has decayed to a very low value. Therefore, there is no 

significant pressure difference between Point5 and Point6, 

so the probability of cavitation is very low, or the 

cavitation phenomenon is small and not obvious. 

The stabilizing time of the overall pressure is about 1s, 

which is a little slower than the 0.75s of test1. The 

increasing of the valve Angle and the size of the channel 

section may have adverse effects on the stabilizing time. 

 

Fig. 13 test5 Particle trajectories at interchanges of 

counter current 

 

Figure 10 shows that in the case of down flow, the 

speed of Point4 is the lowest, which is less than 0.02m/s 

after stability, indicating that in the case of down flow, 

only a small part of the fluid entering from the entrance 

flows into the bend, and most of it flows in the straight. 

Compared with the counter current situation, the speed of 

Point2 and Point6 both increased in the forward flow, and 

the speed of Point2 and Point3 was basically the same after 
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stabilization. Before 0.5s, Point1 and Point6 had a 

fluctuating stage, which first increased and then decreased. 

In the case of forward flow, the position of Point1 was 

close to the wall of the straight channel. When the fluid 

passed through the forward flow, it would impact the wall, 

and the speed increased for a short time, and then the 

speed decreased. Point6 is located at the upstream entrance, 

close to the side wall of the first bend. When the fluid 

flows through here, a small part of the fluid will enter the 

bend, resulting in speed attenuation. The speed attenuation 

of Point6 is larger than that of Point1. At the same position, 

the Point6 of test1 does not decay, but rises steadily and 

finally becomes stable. The position of Point6 is not 

affected by the Angle of the valve, indicating that the 

increase of the channel section will hinder the co-flow of 

the Tesla valve, resulting in the non-smooth co-flow. 

 

Fig. 10 test5 Up-flow velocity variation diagram 

 

Fig. 11 Downstream pressure variation diagram 

 

Figure 11 shows that the maximum pressure value of 

test5 is about 27Pa under the condition of downstream 

flow, and the final stable pressure is about 12Pa, with an 

intermediate fluctuation of about 15Pa. The minimum 

value appears at Point3. In the case of down-flow, Point3 

is to monitor the pressure at the down-flow outlet, and its 

value is about 0.4Pa. 

The pressure of Point5 and Point6, Point1 and Point2 

are completely the same, and the changing trend is the 

same, indicating that there is no cavitation or vortex 

phenomenon in the straight channel under the condition of 

down flow. 

The overall pressure of the system becomes stable after 

0.5s, which is consistent with the situation of test1 

downstream, and the pressure decreases in a step pattern 

with the distance of the velocity inlet. 

4.2 Simulation verification of prediction results 

 

Fig. 12 Prediction group 1 counter current temperature 

cloud map 

 

Fig. 13 Prediction group 1 countercurrent velocity cloud 

map 

 

Fig. 14 Prediction group 5 counter current temperature 

cloud map 

 

Fig. 15 Forecast group 5 counter current velocity cloud 

map 
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Fig. 16  Forecast group 5 velocity change at counter 

current outlet 

 

Table 4 Simulation prediction parameter 

 

 

The results obtained from the training of the neural 

network were verified. Two sets of data, YC1 and YC5, 

were selected for simulation verification, and the 

simulation results of the two sets of predicted data were 

obtained. 

     From the velocity and temperature cloud images, their 

flow conditions and temperature distribution are similar to 

the previous simulation results. 

    Combined with the above data, it can be seen that there 

are still some differences between the simulation data and 

the training results, and the simulation results are generally 

greater than the training results, indicating that the training 

model of the neural network is not as accurate as it is 

displayed, which may be due to too little training data or 

inappropriate hidden layers. Or the numerical solution 

method adopted by Fluent software, such as the finite 

volume method, is not suitable for discretization and 

numerical integration, and these steps will introduce 

certain errors. The selection and setting of numerical 

methods (such as grid resolution, time step, etc.) directly 

affect the accuracy of the simulation. 

 

V. CONCLUSION 

This research focuses on developing a trained neural 

network based prediction method to improve the 

prediction accuracy of the heat transfer mode of the Tesla 

valve heat sink. The unique design of the Tesla valve heat 

sink shows its advantages, but the traditional research 

methods face the problems of complicated calculation, 

time-consuming and inefficient. By comparing with 

traditional prediction methods, this study verifies the 

advantages of the proposed method in terms of calculation 

efficiency and prediction accuracy, and provides a new 

possibility for the prediction of heat transfer mode of Tesla 

valve heat sink. 

     The results of two Fluent simulations show that the 

percentage difference of counter current Nu in YC1 is 

49.26%, while that in YC5 is 40.93%. This indicates that 

the difference between the predicted value of YC1 and the 

simulated value of Fluent is slightly larger than that of 

YC5. The percentage difference of the Di parameter for 

YC1 is about 7.29%, while the percentage difference of 

the Di parameter for YC5 is about 1.43%. 

This shows that on the Di parameter, the difference 

between the predicted value of YC5 and the simulated 

value of Fluent is smaller than that of YC1. The 

percentage difference of the RPEC parameters for YC1 is 

about 7.49%, while the percentage difference of the RPEC 

parameters for YC5 is about 0.82%. This shows that the 

difference between the predicted value of YC5 and the 

simulated value of Fluent is smaller than that of YC1 on 

the RPEC parameters. 

     The accuracy of the neural network training model 

under the known framework is sufficient, and its R value is 

very close to 1. However, in this study on the heat transfer 

of Tesla valve, the influence of valve Angle and cross 

section length on the heat transfer performance of Tesla 

valve is not a simple linear relationship. There are too few 

training data, and the differentiation of training data is not 

fine enough. The activation function or loss function used 

by the neural network is not suitable, which can lead to 

inaccurate prediction results. The flow and heat transfer 

process inside a Tesla valve can involve a variety of 

complex objects. 
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