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Abstract— Wavelet transform is a widely used method in the field of 

signal analysis, and its application effect depends largely on the 

selection of wavelet decomposition level. In view of the unknown 

original signal, this paper transforms the selection of wavelet 

decomposition level into a model selection problem through 

statistical modeling, and then analyzes and presents wavelet 

selection information criteria (WSIC) of orthogonal wavelet 

transform level selection from the perspective of model selection. 

Finally, simulation experiments are conducted to verify and 

compare the effect of the WSIC information criteria with AIC and 

BIC criteria on wavelet level selection. The results show that the 

level accuracy of WSIC is up to 15.1% higher than that of AIC 

criterion and up to 14.3% higher than that of BIC criterion, 

indicating that WSIC criterion has better stability in selecting 

wavelet decomposition level than that of AIC and BIC criterion in 

existing literatures. 

 

I. INTRODUCTION 

Wavelet transform is widely used in the field of signal 

analysis. It is a linear transform with wavelet function as 

its kernel. In the practical application of orthogonal 

wavelet transform, the signal containing noise is 

decomposed into different frequency components 

according to Mallat algorithm. In the signal reconstruction, 

some high frequency detail coefficients related to noise are 

set to zero, and the reconstructed signal after noise 

removal is obtained. The larger the level of wavelet 

decomposition, the more beneficial to noise removal, but 

will also lose more detailed signals, which may cause 

signal distortion. The smaller the level of wavelet 

decomposition, the noise can’t be well eliminated. 

Therefore, in the process of using wavelet transform, 

choosing a suitable decomposition level is the key to 

improve the effect of wavelet denoising. 

Under the condition that the original signal is known, 

the signal after wavelet transformation is usually compared 

with the original signal, and the optimal wavelet 

decomposition level is selected according to various 

evaluation indicators [1,2,3,4]. Under the condition that 

the original signal is unknown, only the observed signal 

containing noise can’t be compared with the original signal 

after wavelet transform. Literature [5] uses blind 

estimation of SNR to analyze the changes of SNR and 

SNR gain by improving the index of SNR and SNR gain, 

and then evaluates the denoising effect of wavelet, thus 

solving the problem of selecting the optimal 

decomposition levels of wavelet transform when the 

original signal is unknown. Literature [6,7,8,9] takes 

energy and information entropy as evaluation indexes to 

determine the wavelet decomposition level, and uses the 

distribution characteristics of signals in different frequency 
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bands to estimate the effectiveness of the wavelet, 

essentially selecting the wavelet that is most similar to the 

signal of interest. However, the selection result of this 

method is easily affected by the noise distribution, and it is 

more suitable for signal diagnosis and recognition. When 

denoising deformation detection signals, literature [10] 

proposed that the wavelet decomposition level should be 

selected based on the minimum information criterion. 

Literature [11] and literature [12] used traditional 

information criteria such as AIC and BIC when selecting 

wavelet decomposition level. When analyzing large-level 

non-stationary data in civil and mechanical engineering 

applications, literature [13] proposes a new framework that 

comprehensively considers multiple indexes for selecting 

the most suitable wavelet base and decomposition level, 

and systematically applies existing evaluation indexes for 

selecting wavelet base and decomposition level. However, 

because of its systematicness, the process of this method is 

relatively complicated in actual operation, and it needs to 

calculate and analyze the signal in many aspects. 

Therefore, it is necessary to find a simple, reasonable and 

efficient method for the level selection of wavelet 

transform. 

Most of the existing methods directly select some 

indicators for the selection of wavelet transform 

decomposition level, but this paper starts with the 

unknown "uncertainty" of the original signal and chooses 

to analyze this problem from the perspective of statistics. 

Firstly, the wavelet transform problem of the signal is 

modeled statistically, and the choice of optimal 

decomposition level is transformed into a model selection 

problem. Then, the Wavelet Selection Information 

Criterion (WSIC) is derived by reasonably balancing the 

goodness of fit and complexity of the model. Finally, it is 

verified by simulation experiments that WSIC criterion is 

more effective in selecting orthogonal wavelet transform 

models than AIC and BIC criteria used in literature [11]. 

The research in this paper provides the method and theory 

support for determining the optimal decomposition level of 

wavelet transform in practical application. 

The rest of this paper is organized as follows. Some 

necessary preliminaries are introduced in Section 2. In 

Section 3, the orthogonal wavelet transform model 

selection criteria is introduced in detail. Simulation 

experiment is provided in Section 4 to verify the 

effectiveness of the proposed WSIC criterion for the 

selection of wavelet decomposition level. Finally, 

conclusions are drawn in Section 5. 

 

 

 

II. PRELIMINARIES 

2.1 Orthogonal Wavelet Transform Theory 

The implementation of orthogonal wavelet transform is 

based on multi-resolution analysis (also known as multi-

scale analysis). According to the finite precision multi-

scale analysis and approximation [14], the signal ( )x t  can 

be expressed as 

, , , ,

1

( ) ( ) ( )
J

J k J k j k j k

k Z j k Z

x t c t d t 
 = 

= +              (1) 

where , ( )J k t  and , ( )j k t  are the functions obtained by the 

scale function ( )t  and the wavelet function ( )t  after 

translation and expansion transformation, respectively, and 

they are the basis functions of the scale space and the 

wavelet space under the corresponding scale. 

The scale coefficient ,J kc  and the wavelet coefficient 

,j kd  are the inner products of the signal and the scale basis 

function , ( )J k t  and the wavelet basis function , ( )j k t , 

respectively: 

, ,( ), ( )J k J kc x t t=                           (2) 

, ,( ), ( )j k j kd x t t=   

There is a step by step derivation relationship between 

the scale coefficient and the wavelet coefficient, and the 

calculation of , ,{ }j k j kc Z  and , ,{ }j k j kd Z  has the following 

transfer relationship for j : 

, 1,( 2 )j k j n

n Z

c h n k c −



= −                       (3) 

, 1,( 2 )j k j n

n Z

d g n k c −



= −                      (4) 

where h  and g  are low-pass and high-pass filters of 

wavelet respectively. Equations (3) and (4) are the basis of 

Mallat algorithm. As can be seen from the two equations, 

as long as { ( )}n Zh n   and { ( )}n Zg n   are known, the scale 

coefficient and wavelet coefficient under each level j  can 

be calculated by observing the 0,{ }n n Zc   obtained by the 

signal. 

2.2 Statistical Model of Orthogonal Wavelet Transform 

It is assumed that the observed signal ( )y t  of length n  

consists of the original signal ( )f t  and Gaussian white 

noise interference ( )t : 

( ) ( ) ( ), 1, ,y t f t t t n= + =                 (5) 

where ( )t  meets the conditions: 
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2
. .

( ) (0, 1, ,),
i i d

t N nt  =  

After the discrete wavelet transform, the signal can be 

expressed in the form of equation (1), assuming that the 

original signal is composed of the approximate signal 

obtained by the wavelet transform, that is, 

, ,( ) ( )J k J k

k Z

f t c t


=  

According to the above assumptions, the statistical model 

of orthogonal wavelet transform can be given: 

, ,

2
. .

( ) ( ) ( ),

( ) ( ,),0, 1, .

J k J k

k Z

i i d

y t c t t

t N nt

 

 



 = +



 =


               (6) 

In the decomposition of level J , the signal 
2( ) ~ ( ( ), )Jy t N t  , where 

, , , ,( ) ( ) ( ) ( ) ( )( )J J k J k J k J k

k Z k Z

t E y t E c t t c t   
 

 
= = + = 

 
   

So 
2

, ,( ) ~ ( ( ), )J k J k

k Z

y t N c t 


 . The density function of 

this distribution is 

2 2

, , ,2

1 1
( | ) exp ( )

22
, ( )J k J k J k

k Z

p y c y c t 
 

 
= − − 

 
 (7) 

2.3 Monotone Property 

The relevant properties of the orthogonal wavelet 

transform statistical model will be discussed in the 

following, which will serve as the basis for subsequent 

research. 

Property 1 The number of scale function , ( )J k t  of the 

model in J  level is  ( )q J , and for 1 2J J  , there is 

1 2( ) ( )q J q J  . 

Proof According to the uniform monotonicity of the 

closed subspace { }j jV Z  in multi-resolution analysis, the 

scale space decreases with the increase of the 

decomposition level, and the number of basic functions of 

the scale space decreases with the decrease of the scale 

space. Because of the frequency domain decomposition of 

the signal, the sampling rate of each level is halved, and 

the length of the new sequence is reduced by half. 

Therefore, the number of scale function ( )q J  decreases 

with the increase of decomposition level J . 

Property 2 The variance of the residual of the model 

on the J  level is 
2ˆ ( )J , and for 1 2J J  , there is 

1 2

2 2 )ˆ ( ) ˆ (J J  . 

Proof According to equation (1), ( )t  can be 

composed of a linear combination of wavelet functions, i.e. 

, ,

1 1

ˆ ˆ( ) ( ) ( )
J J

j k j k j

j k Z j

t d t t  
=  =

= =   

Since the wavelet function ( )t  is zero mean, let 

2ˆ ˆ( ) ~ (0, )j jt N  , according to the mutually orthogonal 

property of the wavelet space at different levels, ˆ ( )j t  can 

be independent of each other. From the additivity of the 

normal distribution, we know that 

2

1

ˆ ˆ ˆ( ) ( ) ~ (0 ), ( )
J

j

j

t t N J  
=

=  

where 
2 2

1

ˆ ˆ( )
J

j

j

J 
=

= . It can be seen that the variance 

of model residuals increases with the increase of 

decomposition level. 

 

III. ORTHOGONAL WAVELET TRANSFORM 

MODEL SELECTION CRITERIA 

According to the principle of orthogonal wavelet 

transform, the trend information of the signal is mainly 

located in the scale space, and the detail information is 

mainly located in the wavelet space. If the scale space that 

completely contains the observation signal ( )y t  is 0, ( )k t , 

that is, the space of scale 0, then the orthogonal wavelet 

transformation process of the signal is to decompose the 

space 0, ( )k t  again and again, and decompose the useful 

information such as the trend of the signal into the scale 

space, and decompose the interference information such as 

noise into the wavelet space. To determine the scale of 

wavelet decomposition is to determine the number of 

decomposition levels, so that the best decomposition effect 

can be achieved under the number of decomposition 

levels. 

3.1 Measure of Model Goodness of Fit 

Since the likelihood function is the most sensitive 

criterion for model parameters to deviate from the true 

value [15], the probability density function of the real 

model is ( )g y , and it can be seen from equation (7) that 

the probability density function of the candidate submodel 

is 
2

,( | ),J kp y c  . Suppose the parameter vector 

2

,( ),J kc = , and consider the independent observed 

signal sequence 1 2, ,..., ny y y  of length n , then the mean 

logarithmic likelihood is 
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1

|
1

ln ( )
n

i

in
p y 

=

  

According to the strong law of numbers, we get 

1

. .
1

ln ( ) )( | ln () ( ;| ) ( | )
n

i

i
a s g y dy S g

n
yp y p p y  

=

=→  (8) 

assuming that the integral exists. 

The Kullback-Leibler (KL) distance is a measure of the 

degree of difference between two probability distributions. 

If the density function of the candidate model is ( | )p   

and the density function of the real model is g , then the 

KL distance between the distribution of the real model and 

the distribution of the candidate model is defined as [16] 

( )
KL( , ) ( ) n( | )

( |
l

)
p y

y

g y
g g y d

p



 =              (9) 

By observing equations (8) and (9), it can be found that 

there is the following relationship between mean 

logarithmic likelihood and KL distance 

KL( , ) ( ; ) ( ; )( | ) ( | )g S gp g S g p − =        (10) 

The KL distance represented by equation (10) is 

always greater than or equal to 0, and the KL distance is 

equal to 0 if and only if )( |) (pg yy = . This shows that 

( | ))( ; pS g   is a reasonable measure of the goodness of 

fit of a model, and by maximizing ( | ))( ; pS g  , or 

minimizing | )( (; pS g − , candidate submodels that are 

closest to the real model can be found. If the maximum 

likelihood estimator of   is 0 , then 0  is the parameter 

that minimizes the KL distance. 

3.2 Deviation Correction 

In the model selection problem, there are usually 

multiple candidate submodels, that is, there are multiple 

( | )p y  , and the parameter vector   of different 

submodels is different. At this time, the maximum 

likelihood principle cannot provide a useful solution for 

this kind of problem, and a solution can be obtained by 

combining the basic idea of statistics with the maximum 

likelihood principle. 

Let's consider the case where KL is equal to 0, which is 

0( | )( )g p yy = . )(KL( |, )pg   and ( | ))( ; pS g   are 

respectively 0KL( , )   and 0( ; )S   , and when   is close 

enough to 0 , 0KL( , )   is approximately 

20 0

1
KL( ; )

2 J
   + =  

where 2 '
J

J  = , J  is the Fisher information 

matrix, which is positive definite and defined as 

2 )l ( |n
ij

i j

J
y

E
p 

 

  
=  

   

 

where ijJ  represents the (i,j)th element of J , i  and j  

are the ith and jth elements of  , respectively. Thus, when 

  is very close to the maximum likelihood estimator 0 , 

the change of the distribution defined by ( | )p y   with the 

true distribution 0( | )p y   over 0( ; )S    can be measured 

by 20

1

2 J
 − . Consider the case where the variation of 

  that maximizes the likelihood function is confined to a 

low-dimensional subspace   that does not contain 0 . 

For the maximum likelihood estimator ̂  of 0  limited to 

in  , if the maximum 0( ; )S    of θ  is close enough to 

0 , then for a sufficiently large n , the distribution of 

2
ˆ|| θ ||

J
n  −  is approximately the Chi-square distribution 

of degrees of freedom equal to the dimension of the 

restricted parameter space under certain regularity 

conditions [15]. So we have 

20 0
ˆ( )2 KL( ; ) || θ ||

J
E X n n k  = − +           (11) 

where the distribution of the variable X  is the same as the 

approximate distribution of 2
ˆ|| θ ||

J
n  − , and k  is the 

dimension of the space   or the number of parameters 

independently adjusted to maximize the likelihood 

function. Equation (11) describes the prediction error 

based on statistical data. 

When there are multiple candidate submodels, it is 

natural to choose the model that minimizes the  

0
ˆKL( ; )E   . Therefore, it is necessary to consider 

estimating 20|| θ ||
J

n −  in equation (11). The asymptotic 

distribution of ˆ( θ)n  −  is approximately a normal 

distribution with a mean of 0 and a variance matrix of  
1J −
. 

If 

0

1 1

ˆ2( ln ( | ) ln ( | ))
n n

i i

i i

p y p y 
= =

−             (12) 

is used as an estimate of 20|| θ ||
J

n − , then the downward 

bias introduced by replacing θ  with ̂  needs to be 

corrected. This can be done by adding k  to equation (12). 

When selecting the model, it is only necessary to compare 

the 0
ˆKL( ; )E    estimates of different candidate submodels. 
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Since the public items do not affect the comparison, the 

public items containing 0  can be discarded. 

3.3 Model Parameter Estimation 

For parameter vector 2

,( ),J kc = , the estimator of  

, ( )J kc k Z  can be obtained as 

, , )ˆ ( ), ( ) , (J kJ k y t t Zc k =   

according to equation (2). 

The maximum likelihood estimator of 
2  can be 

obtained by calculation as 

2 2

, ,

1

1
ˆ ˆ( ) ( )( )

n

J k J k

t k Z

y t c t
n

 
= 

= −              (13) 

Using equation (13), it can be obtained that the 

maximum value of log-likelihood function  

2

,ln ; ,( )J kL y c   is  

2 2

,
ˆln ; , ln(2 ) ln

2 2 2
( )J k

n n n
L y c   = − − −       (14) 

3.4 Determination of Model Selection Criteria 

In order to calculate the estimates of 0
ˆKL( ; )E    for 

different candidate submodels, equation (14) is brought 

into equation (12), and the deviation correction term k  is 

introduced, where k  can be regarded as the dimension of 

scale space. According to property 1 of the orthogonal 

wavelet transform model, the number of scale function  

, ( )J k t  on the J -level is ( )q J , then the dimension of the 

scale space is also ( )q J . Then discard the common term 

and the irrelevant constant term, and finally get the 

orthogonal wavelet transformation model selection 

criterion is  

2ˆln 2n q +                                (15)  

where n  is the signal length, according to the property 2 

of the orthogonal wavelet transform model , 
2̂  is the 

variance of the cumulant of all detail noise signals 

obtained after J  decomposition, and q  is the dimension 

of the scale space under the level J , that is, the number of 

scale functions or the number of scale coefficients. 

By observing equation (15), it can be found that this 

criterion is very similar to AIC criterion used in literature 

[11] in form, but the meanings expressed by variables are 

different. In order to distinguish, the criterion represented 

by equation (15) given in this paper is named the wavelet 

selection information criterion (WSIC). 

According to the property of orthogonal wavelet 

transform model, q  decreases with the increase of 

decomposition level, and 2̂  increases with the increase of 

decomposition level, so a suitable J  can always be found 

to make WSIC reach the minimum value, and the J  

satisfying this condition is the optimal decomposition level 

of the corresponding wavelet. 

 

IV. SIMULATION EXPERIMENT 

4.1 Experimental Setup 

In order to verify the effectiveness of the WSIC 

criterion for the selection of wavelet decomposition level 

given in this paper, WSIC criterion, AIC criterion and BIC 

criterion are used to process the same data respectively, 

and the effects of different criteria for the selection of 

wavelet decomposition level are compared. In order to 

avoid the useful high-frequency detail signal as noise 

removal, stein unbiased risk estimation is selected to 

determine the threshold and soft threshold function is used 

to process the coefficient. The simulation experiment steps 

are as follows: 

Step 1: Selecting a wavelet and generating the original 

signal ( )f t  using the scale function of the wavelet 

obtained by 7 iterations. 

Step 2: Adding Gaussian white noise interference ( )t  

to ( )f t , to obtain a noise signal with a specific SNR. 

Step 3: Decomposing the signal to the largest level 

with the selected wavelet and store the detail coefficients 

of each level. 

Step 4: Calculating the stein unbiased risk estimation 

threshold for each level of detail coefficients. 

Step 5: Processing the detail coefficients of each level 

by using the soft threshold function. 

Step 6: Reconstructing the signal with the coefficient 

after threshold processing, to obtain the estimated signal. 

Step 7: Calculating the values of WSIC, AIC and BIC 

under each level respectively, and selecting the level 

corresponding to the minimum value of each index as the 

optimal level under the index. 

Step 8: Increasing the signal-to-noise ratio from -5dB 

to 35dB with an interval of 5dB. Repeating Step 2-Step 7 

1000 times for each signal-to-noise ratio, and recording the 

results of each experiment. 

4.2 Analysis of Experimental Results 

In order to avoid the chance of the experiment, db6, 

sym7 and coif2 wavelets-three different types and 

representative of the experiment were selected at the same 

time. Among them, the signal length generated by db6 and 

coif2 wavelet is 1409, and the signal length generated by 
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sym7 wavelet is 1665. The above simulation experiments 

were carried out by matlab, and the level selected by each 

criterion and the number of experiments selected for this 

level were recorded. The frequency obtained by dividing 

the number of experiments of this level by the total 

number of experiments is taken as the probability of 

selecting this level. The level with the greatest probability 

is chosen as the optimal level of the criterion. The 

probability corresponding to the optimal level is denoted 

as the level accuracy, and the higher the value, the greater 

the probability that the selected level is the optimal level. 

The optimal level and the accuracy of level were compared 

between WSIC criterion, AIC criterion and BIC criterion. 

The experimental results are shown in TABLE 1 - TABLE 

3. 

Table.1: The selection level and corresponding probability of the three criteria under different SNR (db6 wavelet) 

SNR/dB -5 0 5 10 15 20 25 30 35 

WSIC 

84.9% 

(7) 

67.6% 

(6) 

98.8% 

(6) 

92.9% 

(6) 

53.6% 

(6) 

98.1% 

(5) 

62.8% 

(4) 

99.9% 

(4) 

99.8% 

(4) 

15.1% 

(6) 

32.3% 

(7) 

1.2% 

(5) 

7.1% 

(5) 

45.9% 

(5) 

1.9% 

(4) 

37.2% 

(5) 

0.1% 

(3) 

0.2% 

(3) 

/ 
0.1% 

(5) 
/ / 

0.5% 

(4) 
/ / / / 

AIC 

78.6% 

(7) 

56.4% 

(6) 

94.5% 

(6) 

90.6% 

(6) 

63% 

(6) 

88.4% 

(5) 

51.4% 

(4) 

99.9% 

(4) 

99.6% 

(4) 

21.3% 

(6) 

42.9% 

(7) 

3.2% 

(5) 

9.4% 

(5) 

37% 

(5) 

7.9% 

(6) 

48.6% 

(5) 

0.1% 

(3) 

0.4% 

(3) 

0.1% 

(5) 

0.7% 

(5) 

2.3% 

(7) 
/ / 

3.7% 

(4) 
/ / / 

BIC 

78.5% 

(7) 

56.7% 

(6) 

94.6% 

(6) 

90.2% 

(6) 

62.7% 

(6) 

88.5% 

(5) 

51.7% 

(4) 

99.9% 

(4) 

99.6% 

(4) 

21.4% 

(6) 

42.5% 

(7) 

3.2% 

(5) 

9.8% 

(5) 

37.3% 

(5) 

7.6% 

(6) 

48.3% 

(5) 

0.1% 

(3) 

0.4% 

(3) 

0.1% 

(5) 

0.8% 

(5) 

2.2% 

(7) 
/ / 

3.9% 

(4) 
/ / / 

Table.2: The selection level and corresponding probability of the three criteria under different SNR (sym7 wavelet) 

SNR/dB -5 0 5 10 15 20 25 30 35 

WSIC 

79.8% 

(7) 

80.8% 

(6) 

99.3% 

(6) 

97.3% 

(6) 

71% 

(6) 

98.4% 

(5) 

90.3% 

(5) 

98.3% 

(4) 

100% 

(4) 

20.2% 

(6) 

18.8% 

(7) 

0.7% 

(5) 

2.7% 

(5) 

29% 

(5) 

1.5% 

(6) 

9.7% 

(4) 

1.7% 

(5) 
/ 

/ 
0.4% 

(5) 
/ / / 

0.1% 

(4) 
/ / / 

AIC 

71% 

(7) 

75.7% 

(6) 

96.6% 

(6) 

93.3% 

(6) 

72.9% 

(6) 

89.5% 

(5) 

88.7% 

(5) 

92% 

(4) 

100% 

(4) 

29% 

(6) 

23.5% 

(7) 

3.3% 

(5) 

6.7% 

(5) 

27.1% 

(5) 

10.3% 

(6) 

11.3% 

(4) 

8% 

(5) 
/ 

/ 0.8% 0.1% / / 0.2% / / / 
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(5) (7) (4) 

BIC 

70.8% 

(7) 

76.1% 

(6) 

96.6% 

(6) 

93% 

(6) 

72.3% 

(6) 

89.6% 

(5) 

88.4% 

(5) 

92.1% 

(4) 

100% 

(4) 

29.2% 

(6) 

23.1% 

(7) 

3.3% 

(5) 

7% 

(5) 

27.7% 

(5) 

10.2% 

(6) 

11.6% 

(4) 

7.9% 

(5) 
/ 

/ 
0.8% 

(5) 

0.1% 

(7) 
/ / 

0.2% 

(4) 
/ / / 

 

Table.3: The selection level and corresponding probability of the three criteria under different SNR (coif2 wavelet) 

SNR/dB -5 0 5 10 15 20 25 30 35 

WSIC 

83.1% 

(7) 

68.2% 

(6) 

92% 

(6) 

53.9% 

(5) 

74.4% 

(5) 

99.6% 

(4) 

97.2% 

(4) 

93.6% 

(3) 

100% 

(3) 

16.2% 

(6) 

30.3% 

(7) 

7.6% 

(5) 

45.8% 

(6) 

25.4% 

(4) 

0.3% 

(5) 

2.8% 

(3) 

6.4% 

(4) 
/ 

0.7% 

(5) 

1.5% 

(5) 

0.3% 

(7) 

0.3% 

(4) 

0.2% 

(6) 

0.1% 

(3) 
/ / / 

/ / 
0.1% 

(4) 
/ / / / / / 

AIC 

75.7% 

(7) 

57.3% 

(6) 

85.9% 

(6) 

71.3% 

(6) 

67.5% 

(5) 

94.7% 

(4) 

97.9% 

(4) 

78.5% 

(3) 

100% 

(3) 

24.2% 

(6) 

40.7% 

(7) 

10.6% 

(5) 

28.6% 

(5) 

17.5% 

(4) 

5.2% 

(5) 

2.1% 

(3) 

21.5% 

(4) 
/ 

0.1% 

(5) 

2% 

(5) 

3.5% 

(7) 

0.1% 

(4) 

15% 

(6) 

0.1% 

(3) 
/ / / 

BIC 

75.7% 

(7) 

57.4% 

(6) 

85.8% 

(6) 

70.7% 

(6) 

67.7% 

(5) 

94.8% 

(4) 

97.9% 

(4) 

79.3% 

(3) 

100% 

(3) 

24.2% 

(6) 

40.6% 

(7) 

10.8% 

(5) 

29.2% 

(5) 

17.8% 

(4) 

5.1% 

(5) 

2.1% 

(3) 

20.7% 

(4) 
/ 

0.1% 

(5) 

2% 

(5) 

3.4% 

(7) 

0.1% 

(4) 

14.5% 

(6) 

0.1% 

(3) 
/ / / 

 

In TABLE 1 to TABLE 3, the first line of each 

criterion is the optimal level and level accuracy selected by 

the criterion. TABLE 1 is taken as an example for analysis. 

The first column of data shows that the signal generated by 

db6 wavelet is interfered with by Gaussian white noise to 

obtain a noisy signal with a signal-to-noise ratio of -5dB. 

WSIC, AIC and BIC criteria are used to select the optimal 

decomposition level of the signal, and the optimal 

decomposition level selected by the three criteria is 7. 

However, the accuracy of WSIC, AIC and BIC criteria 

were 84.9%, 78.6% and 78.5%, respectively. It can be 

found that the level accuracy of WSIC criteria is higher 

than that of AIC and BIC criteria. Similarly, the level 

accuracy of the three criteria under other SNR and the 

experimental situation of other wavelet can be compared. 

It can be seen from the results that the optimal level 

selected by WSIC criteria is basically the same as that 

selected by AIC and BIC criteria, but the level accuracy of 

WSIC criteria is greater than that of AIC and BIC criteria 

under most SNR conditions. The level accuracy of WSIC 

criterion is up to 15.1% higher than that of AIC criterion 

and up to 14.3% higher than that of BIC criterion. This 
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shows that WSIC criterion has higher stability than AIC 

and BIC criterion when selecting the optimal level. 

 

V. CONCLUSION 

The choice of wavelet transform decomposition level is 

the key to the effect of wavelet noise reduction. In the case 

that the original signal is unknown, this paper looks at the 

problem of wavelet level selection from the perspective of 

model selection from a statistical point of view, gives the 

WSIC criterion, and compares the application effect of 

WSIC criterion with AIC and BIC criteria through 

simulation experiments. The simulation results show that 

the level accuracy of WSIC criterion is up to 15.1% higher 

than that of AIC criterion and up to 14.3% higher than that 

of BIC criterion. The results show that WSIC criterion is 

more stable than AIC and BIC criterion in the selection of 

orthogonal wavelet transform model. It shows that WSIC 

criterion has higher level accuracy when the optimal level 

selected by the three criteria is the same. This criterion can 

reasonably balance the goodness of fit and the complexity 

of the model in the process of wavelet transformation, and 

can more accurately select the optimal decomposition level 

under different signal-to-noise ratio, so that the wavelet 

noise reduction can achieve better results. The research in 

this paper provides the method and theory support for 

determining the optimal decomposition level of wavelet 

transform in practical application. Further study can apply 

the WSIC criterion in this paper to practical problems. 
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