Classifying Emotional Engagement in Online Learning Via Deep Learning Architecture
Keywords:
deep learning, emotional engagement, engagement, framework, online learning, ResNet-50Abstract
The world has seen a phenomenal rise in online learning over the past decade, with universities shifting courses to online modes, MOOCs(Massive Open Online Course) emerging and laptop and tab-based initiatives being extensively promoted. However, educators face significant challenges in analyzing learning environments due to issues like lack of in-person cues, small video size, etc. To address these challenges, it is crucial to analyze the engagement levels of online classes. Out of the various subcategories of engagement, emotional engagement is one that is overlooked, but integral to analysis and deterministic in its approach. In response, we developed a deep learning architecture to analyze emotional engagement in online classes. Our method utilizes a ResNet50-based algorithm, refined through experimentation with various techniques such as transfer learning, optimizers, and pre-trained weights. The model adds a unique layer to the analysis of different algorithms used for engagement detection in academia while also achieving stellar rates of 81.34% validation accuracy and 81.04% training accuracy. Unlike other models, our approach employs high-quality image data for training, ensuring more reliable results. Moreover, we constructed a novel framework for applying emotional engagement to real-world scenarios, thus bridging the pre-existing gap between implementation and academia. The integration of this technology into online learning has immense potential, and can bring with it a shift in the quality of education. By fostering a safe and healthy learning space for every student, we can significantly enhance the effectiveness of online education systems.