Study on Control of Inverted Pendulum System Based on Simulink Simulation
Keywords:
Inverted pendulum system, Proportional integral differential (PID) control, Fuzzy PID control, Nonlinear dynamic system, Simulink simulationAbstract
This study aims to conduct control research on an inverted pendulum system using the Simulink simulation platform. The inverted pendulum system is a classic nonlinear dynamic system with important theoretical and practical applications. Firstly, establish a mathematical model of the inverted pendulum system, including the dynamic equation of the pendulum rod and the sensor measurement model. Subsequently, the PID (proportional integral differential) controller design method based on the inverted pendulum system and the fuzzy PID controller design methods were verified through simulation experiments. The ultimate goal is for the designed fuzzy PID controller to effectively stabilize the inverted pendulum system in the vertical position and achieve fast tracking of the target position. Simulation and experimental results show that compared to traditional PID controllers, fuzzy PID controllers can quickly stabilize the pendulum in the target position and have good practicality, stability, speed, and accuracy. Future research can further explore the application of other advanced control strategies in inverted pendulum systems, as well as their potential applications in practical engineering.